A sequence of mappings associated with the Hermite-Hadamard inequalities and applications
Applications of Mathematics (2004)
- Volume: 49, Issue: 2, page 123-140
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topDragomir, Sever Silvestru. "A sequence of mappings associated with the Hermite-Hadamard inequalities and applications." Applications of Mathematics 49.2 (2004): 123-140. <http://eudml.org/doc/33179>.
@article{Dragomir2004,
abstract = {New properties for some sequences of functions defined by multiple integrals associated with the Hermite-Hadamard integral inequality for convex functions and some applications are given.},
author = {Dragomir, Sever Silvestru},
journal = {Applications of Mathematics},
keywords = {Hermite-Hadamard inequality; multiple integrals; convex functions},
language = {eng},
number = {2},
pages = {123-140},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A sequence of mappings associated with the Hermite-Hadamard inequalities and applications},
url = {http://eudml.org/doc/33179},
volume = {49},
year = {2004},
}
TY - JOUR
AU - Dragomir, Sever Silvestru
TI - A sequence of mappings associated with the Hermite-Hadamard inequalities and applications
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 2
SP - 123
EP - 140
AB - New properties for some sequences of functions defined by multiple integrals associated with the Hermite-Hadamard integral inequality for convex functions and some applications are given.
LA - eng
KW - Hermite-Hadamard inequality; multiple integrals; convex functions
UR - http://eudml.org/doc/33179
ER -
References
top- Hadamard-type inequalities for -convex functions with applications, Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 133 (1999), 187–200. (1999) MR1799453
- A note on Hadamard’s inequalities, C. R. Math. Rep. Acad. Sci. Canada 11 (1989), 255–258. (1989) Zbl0707.26012MR1030364
- On an integral inequality, Anal. Numér. Théor. Approx. 18 (1989), 101–103. (1989) Zbl0721.26011MR1089226
- Convex functions and the Hadamard inequality, Rev. Colombiana Mat. 28 (1994), 7–12. (1994) Zbl0832.26015MR1304041
- A probabilistic argument for the convergence of some sequences associated to Hadamard’s inequality, Studia Univ. Babeş-Bolyai Math. 38 (1993), 29–33. (1993) MR1863680
- 10.1515/dema-1996-0109, Demostratio Math. 29 (1996), 53–59. (1996) MR1398727DOI10.1515/dema-1996-0109
- A mapping in connection to Hadamard’s inequalities, Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 128 (1991), 17–20. (1991) Zbl0747.26015MR1188722
- A refinement of Hadamard’s inequality for isotonic linear functionals, Tamkang J. Math. 24 (1993), 101–106. (1993) Zbl0799.26016MR1215250
- On Hadamard’s inequalities for convex functions, Mat. Balkanica (N. S.) 6 (1992), 215–222. (1992) Zbl0834.26010MR1183627
- On Hadamard’s inequality for the convex mappings defined on a ball in the space and applications, Math. Inequal. Appl. 3 (2000), 177–187. (2000) Zbl0951.26010MR1749295
- On Hadamard’s inequality on a disk, JIPAM. J. Inequal. Pure Appl. Math. 1 (2000), http://jipam.vu.edu.au/, Electronic. (2000) Zbl0948.26012MR1756653
- Some integral inequalities for differentiable convex functions, Makedon. Akad. Nauk Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 13 (1992), 13–17. (1992) Zbl0770.26009MR1262519
- Some remarks on Hadamard’s inequalities for convex functions, Extracta Math. 9 (1994), 88–94. (1994) Zbl0984.26012MR1325288
- 10.1016/0022-247X(92)90233-4, J. Math. Anal. Appl. 167 (1992), 49–56. (1992) Zbl0758.26014MR1165255DOI10.1016/0022-247X(92)90233-4
- 10.1016/S0893-9659(98)00030-5, Appl. Math. Lett. 11 (1998), 33–38. (1998) MR1628995DOI10.1016/S0893-9659(98)00030-5
- Refinements of Hadamard’s inequality for multiple integrals, Utilitas Math. 47 (1995), 193–198. (1995) MR1330902
- 10.1006/jmaa.2000.6769, J. Math. Anal. Appl. 245 (2000), 489–501. (2000) MR1758551DOI10.1006/jmaa.2000.6769
- Hadamard inequality for -convex functions in the first sense and applications, Demonstratio Math. 31 (1998), 633–642. (1998) MR1658478
- The Hadamard’s inequality for -convex functions in the second sense, Demonstratio Math. 32 (1999), 687–696. (1999) MR1740330
- On some inequalities for convex-dominated functions, Anal. Numér. Théor. Approx. 19 (1990), 21–27. (1990) MR1159773
- On some refinements of Hadamard’s inequalities and applications, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 4 (1993), 3–10. (1993)
- On Hadamard’s inequality for a class of functions of Godunova and Levin, Indian J. Math. 39 (1997), 1–9. (1997) MR1476079
- 10.1017/S0004972700031786, Bull. Austral. Math. Soc. 57 (1998), 377–385. (1998) MR1623227DOI10.1017/S0004972700031786
- On Jessen’s related inequalities for isotonic sublinear functionals, Acta Sci. Math. 61 (1995), 373–382. (1995) MR1377372
- Some inequalities of Hadamard type, Soochow J. Math. 21 (1995), 335–341. (1995) MR1348130
- A note on the Jensen-Hadamard inequality, Anal. Numér. Théor. Approx. 19 (1990), 29–34. (1990) MR1159774
- Some inequalities for -convex functions, Studia Univ. Babeş-Bolyai Math. 38 (1993), 21–28. (1993) MR1863679
- A best possible Hadamard inequality, Math. Inequal. Appl. 1 (1998), 223–230. (1998) Zbl0907.26009MR1613456
- Toward a theory of best possible inequalities, Nieuw Arch. Wisk. 12 (1994), 19–29. (1994) Zbl0827.26018MR1284677
- Two inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. 6 (1995), 48–49. (1995) Zbl0841.26009MR1367482
- On Hadamard’s inequality for the convex mappings defined on a convex domain in the space, JIPAM. J. Inequal. Pure Appl. Math. 1 (2000), Article 9, http://jipam.vu.edu.au/, Electronic. (2000) Zbl0949.26008MR1756660
- 10.1006/jmaa.1997.5645, J. Math. Anal. Appl. 215 (1997), 461–470. (1997) MR1490762DOI10.1006/jmaa.1997.5645
- Inequalities. 2nd ed, Cambridge University Press, 1952. (1952) MR0046395
- On weighted generalization of Hadamard’s inequality for functions, Tamsui Oxf. J. Math. Sci. 16 (2000), 91–104. (2000) MR1772077
- The Jensen-Hadamard inequality for convex functions of higher order, Octogon Math. Mag. 5 (1997), 8–9. (1997) MR1619472
- A generalization of Hadamard’s inequality for convex functions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 544–576 (1976), 115–121. (1976) MR0444865
- A short proof of generalized Hadamard’s inequalities, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 634–677 (1979), 126–128. (1979) MR0579274
- 10.1007/BF02189414, Aequationes Math. 28 (1985), 229–232. (1985) MR0791622DOI10.1007/BF02189414
- Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993. (1993) MR1220224
- 10.1016/0022-247X(86)90218-0, J. Math. Anal. Appl. 120 (1986), 315–320. (1986) Zbl0601.26013MR0861922DOI10.1016/0022-247X(86)90218-0
- 10.1016/0022-247X(89)90262-X, J. Math. Anal. Appl. 137 (1989), 514–549. (1989) MR0984976DOI10.1016/0022-247X(89)90262-X
- Inequalities involving multivariate convex functions. II, Proc. Amer. Math. Soc. 109 (1990), 965–974. (1990) Zbl0699.26009MR1009996
- A note on the dual Hermite-Hadamard inequality, The Math. Gazette (July 2000), . (July 2000)
- Convexity according to the geometric mean, Math. Inequal. Appl. 3 (2000), 155–167. (2000) Zbl0952.26006MR1749293
- 10.1006/jmaa.1997.5822, J. Math. Anal. Appl. 220 (1998), 99–109. (1998) MR1612079DOI10.1006/jmaa.1997.5822
- 10.1006/jmaa.1999.6593, J. Math. Anal. Appl. 240 (1999), 92–104. (1999) MR1728202DOI10.1006/jmaa.1999.6593
- Remarks on two interpolations of Hadamard’s inequalities, Makedon. Akad. Nauk. Umet. Oddel. Mat.-Tehn. Nauk. Prilozi 13 (1992), 9–12. (1992) MR1262518
- A generalization of Hadamard’s inequality for isotonic linear functionals, Rad. Mat. 7 (1991), 103–107. (1991) MR1126888
- Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992. (1992) MR1162312
- An application of the Jensen-Hadamard inequality, Nieuw Arch. Wisk. 8 (1990), 63–66. (1990) MR1056662
- On the Jensen-Hadamard inequality, Studia Univ. Babeş-Bolyai, Math. 36 (1991), 9–15. (1991) MR1280888
- Note on convex functions. IV. On Hadamard’s inequality for weighted arithmetic means, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. 678–715 (1980), 199–205. (1980)
- A note on Hadamard’s inequality, Tamkang J. Math. 28 (1997), 33–37. (1997) MR1457248
- 10.1006/jmaa.1999.6506, J. Math. Anal. Appl. 239 (1999), 180–187. (1999) MR1719056DOI10.1006/jmaa.1999.6506
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.