Wave front tracking in systems of conservation laws

Rinaldo M. Colombo

Applications of Mathematics (2004)

  • Volume: 49, Issue: 6, page 501-537
  • ISSN: 0862-7940

Abstract

top
This paper contains several recent results about nonlinear systems of hyperbolic conservation laws obtained through the technique of Wave Front Tracking.

How to cite

top

Colombo, Rinaldo M.. "Wave front tracking in systems of conservation laws." Applications of Mathematics 49.6 (2004): 501-537. <http://eudml.org/doc/33199>.

@article{Colombo2004,
abstract = {This paper contains several recent results about nonlinear systems of hyperbolic conservation laws obtained through the technique of Wave Front Tracking.},
author = {Colombo, Rinaldo M.},
journal = {Applications of Mathematics},
keywords = {conservation laws; Wave Front Tracking; conservation laws; wave front tracking},
language = {eng},
number = {6},
pages = {501-537},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Wave front tracking in systems of conservation laws},
url = {http://eudml.org/doc/33199},
volume = {49},
year = {2004},
}

TY - JOUR
AU - Colombo, Rinaldo M.
TI - Wave front tracking in systems of conservation laws
JO - Applications of Mathematics
PY - 2004
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 49
IS - 6
SP - 501
EP - 537
AB - This paper contains several recent results about nonlinear systems of hyperbolic conservation laws obtained through the technique of Wave Front Tracking.
LA - eng
KW - conservation laws; Wave Front Tracking; conservation laws; wave front tracking
UR - http://eudml.org/doc/33199
ER -

References

top
  1. 10.1007/BF00375400, Arch. Rational Mech. Anal. 114 (1991), 119–154. (1991) MR1094433DOI10.1007/BF00375400
  2. 10.1007/PL00001406, NoDEA Nonlinear Differential Equations Appl. 4 (1997), 1–42. (1997) Zbl0868.35069MR1433310DOI10.1007/PL00001406
  3. 10.1006/jdeq.1997.3274, J.  Differential Equations 138 (1997), 229–266. (1997) MR1462268DOI10.1006/jdeq.1997.3274
  4. Viscosity solutions and standard Riemann semigroup for conservation laws with boundary, Rend. Sem. Mat. Univ. Padova 99 (1998), 219–245. (1998) MR1636611
  5. 10.1007/s002050200198, Arch. Rational Mech. Anal. 162 (2002), 327–366. (2002) MR1904499DOI10.1007/s002050200198
  6. Uniqueness and continuous dependence for systems of balance laws with dissipation, Nonlinear Anal. 49A (2002), 987–1014. (2002) MR1895539
  7. On the attainable set for Temple class systems with boundary controls, Preprint (2002). (2002) MR2179483
  8. 10.1137/S0363012996304407, SIAM  J.  Control Optim. 36 (1998), 290–312. (1998) MR1616586DOI10.1137/S0363012996304407
  9. L 1 -stability for n × n non genuinely nonlinear conservation laws, Preprint (2000). (2000) 
  10. 10.1006/jdeq.2000.4012, J.  Differential Equations 177 (2001), 454–493. (2001) MR1876651DOI10.1006/jdeq.2000.4012
  11. 10.11650/twjm/1500407200, Taiwanese J. Math. 4 (2000), 105–117. (2000) Zbl0951.35078MR1757985DOI10.11650/twjm/1500407200
  12. The semigroup generated by a Temple class system with large data, Differential Integral Equations 10 (1997), 401–418. (1997) MR1744853
  13. 10.1006/jmaa.1997.5715, J.  Math. Anal. Appl. 217 (1998), 395–404. (1998) MR1492096DOI10.1006/jmaa.1997.5715
  14. 10.3934/dcds.2001.7.837, Discrete Contin. Dynam. Systems 7 (2001), 837–853. (2001) MR1849664DOI10.3934/dcds.2001.7.837
  15. The semigroup generated by a Temple class system with non-convex flux function, Differential Integral Equations 13 (2000), 1529–1550. (2000) Zbl1043.35110MR1787080
  16. Vanishing viscosity solutions of nonlinear hyperbolic systems, Annals of Mathematics (to appear). (to appear) MR2150387
  17. On the stability of the standard Riemann semigroup, Proc. Amer. Math. Soc. 130 (2002), 1961–1973 (electronic). (2002) MR1896028
  18. 10.1016/0022-247X(92)90027-B, J.  Math. Anal. Appl. 170 (1992), 414–432. (1992) Zbl0779.35067MR1188562DOI10.1016/0022-247X(92)90027-B
  19. 10.1007/BF00392027, Arch. Rational Mech. Anal. 130 (1995), 205–230. (1995) Zbl0835.35088MR1337114DOI10.1007/BF00392027
  20. The semigroup approach to systems of conservation laws. Fourth Workshop on Partial Differential Equations, Part I (Rio de Janeiro, 1995), Math. Contemp. 10 (1996), 21–74. (1996) MR1425453
  21. Uniqueness and stability of weak solutions to systems of conservation laws, In: Proceedings of the 9th  International Conference on Waves and Stability in Continuous Media (Bari, 1997), Suppl. Rend. Circ. Mat. Palermo (2), Ser. 57, 1998, pp. 69–78. (1998) Zbl0941.35048MR1708496
  22. Hyperbolic Systems of Conservation Laws, Oxford Lecture Series in Mathematics and its Applications, Vol. 20, Oxford University Press, Oxford, 2000. (2000) Zbl1157.35421MR1816648
  23. The front tracking method for systems of conservation laws, In: Handbook of Partial Differential Equations, C. M.  Dafermos, and E. Feireisl (eds.), Elsevier. To appear. MR2103697
  24. 10.1137/S0363012901392529, SIAM J.  Control Optim. 41 (2002), 607–622 (electronic). (2002) MR1920513DOI10.1137/S0363012901392529
  25. 10.1007/BF00375350, Arch. Rational Mech. Anal. 133 (1995), 1–75. (1995) MR1367356DOI10.1007/BF00375350
  26. Unique solutions of 2 × 2 conservation laws with large data, Indiana Univ. Math.  J. 44 (1995), 677–725. (1995) MR1375345
  27. Decay of positive waves in nonlinear systems of conservation laws, Ann. Scuola Norm. Sup. Pisa Cl.  Sci. IV 26 (1998), 133–160. (1998) MR1632980
  28. Well-posedness of the Cauchy problem for n × n systems of conservation laws, Mem. Amer. Math. Soc. 146(694), 2000. (2000) MR1686652
  29. 10.1006/jdeq.1998.3606, J.  Differential Equations 156 (1999), 26–49. (1999) MR1701818DOI10.1006/jdeq.1998.3606
  30. 10.3934/dcds.1997.3.35, Discrete Contin. Dynam. Systems 3 (1997), 35–58. (1997) MR1422538DOI10.3934/dcds.1997.3.35
  31. 10.1007/s002050050068, Arch. Rational Mech. Anal. 140 (1997), 301–317. (1997) MR1489317DOI10.1007/s002050050068
  32. Structural stability and regularity of entropy solutions to hyperbolic systems of conservation laws, Indiana Univ. Math.  J. 48 (1999), 43–84. (1999) MR1722193
  33. Shift differentials of maps in BV  spaces, In: Nonlinear Theory of Generalized Function (Vienna, 1997), Vol.  401 of Chapman & Hall/CRC Res. Notes Math, 401, Chapman & Hall/CRC, Boca Raton, 1999, pp. 47–61. (1999) MR1699858
  34. 10.1007/s002050050165, Arch. Rational Mech. Anal. 149 (1999), 1–22. (1999) MR1723032DOI10.1007/s002050050165
  35. 10.1137/S0036139901393184, SIAM J.  Appl. Math. 63 (2002), 708–721. (2002) Zbl1037.35043MR1951956DOI10.1137/S0036139901393184
  36. 10.1137/S0036141097331871, SIAM J. Math. Anal. 31 (1999), 34–62. (1999) MR1720130DOI10.1137/S0036141097331871
  37. 10.1006/jdeq.2001.4131, J.  Differential Equations 184 (2002), 321–347. (2002) MR1929881DOI10.1006/jdeq.2001.4131
  38. 10.1007/s00030-003-1006-0, NoDEA Nonlinear Differential Equations Appl. 10 (2003), 255–268. (2003) MR1994810DOI10.1007/s00030-003-1006-0
  39. A semilinear structure on semigroups in a metric space, Semigroup Forum (to appear). (to appear) MR2050900
  40. Minimising stop & go waves to optimise traffic flow, Appl. Math. Letters (to appear). (to appear) MR2064183
  41. 10.1016/j.na.2003.09.022, Nonlinear Anal. 56 (2004), 567–589. (2004) MR2035327DOI10.1016/j.na.2003.09.022
  42. 10.1007/s00526-003-0201-5, Calc. Var. Partial Differential Equations 19 (2004), 269–280. (2004) MR2033062DOI10.1007/s00526-003-0201-5
  43. 10.1081/PDE-120024372, Comm. Partial Differential Equations 28 (2003), 1371–1389. (2003) MR1998941DOI10.1081/PDE-120024372
  44. 10.1080/03605309808821397, Comm. Partial Differential Equations 23 (1998), 1693–1718. (1998) MR1641709DOI10.1080/03605309808821397
  45. Viscosity solutions and uniqueness for systems of inhomogeneous balance laws, Discrete Contin. Dynam. Systems 3 (1997), 477–502. (1997) MR1465122
  46. 10.1016/0022-247X(72)90114-X, J.  Math. Anal. Appl. 38 (1972), 33–41. (1972) Zbl0233.35014MR0303068DOI10.1016/0022-247X(72)90114-X
  47. 10.1007/BF00286497, Arch. Rational Mech. Anal. 107 (1989), 127–155. (1989) Zbl0714.35046MR0996908DOI10.1007/BF00286497
  48. Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag, Berlin, first edition, 2000. (2000) Zbl0940.35002MR1763936
  49. Generalised characteristics in hyperbolic systems of conservation laws with special coupling, Proc. Roy. Soc. Edinburgh Sect.  A 116 (1990), 245–278. (1990) MR1084734
  50. 10.1016/S0294-1449(16)30263-3, Ann. Inst. H. Poincaré Anal. Non Linéaire 8 (1991), 231–269. (1991) MR1127926DOI10.1016/S0294-1449(16)30263-3
  51. 10.1016/0022-0396(88)90040-X, J.  Differential Equations 71 (1988), 93–122. (1988) MR0922200DOI10.1016/0022-0396(88)90040-X
  52. 10.1002/cpa.3160180408, Comm. Pure Appl. Math. 18 (1965), 697–715. (1965) Zbl0141.28902MR0194770DOI10.1002/cpa.3160180408
  53. Front Tracking for Hyperbolic Conservation Laws. Applied Mathematical Sciences Vol.  152, Springer-Verlag, Berlin, 2002. (2002) MR1912206
  54. 10.1137/S0036141099352339, SIAM J.  Math. Anal. 31 (2000), 894–908 (electronic). (2000) Zbl0969.35091MR1752421DOI10.1137/S0036141099352339
  55. 10.1002/cpa.3160100406, Comm. Pure Appl. Math. 10 (1957), 537–566. (1957) Zbl0081.08803MR0093653DOI10.1002/cpa.3160100406
  56. Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical shock waves Lectures in Mathematics ETH Zürich, Birkhäuser-Verlag, Basel, 2002. (2002) MR1927887
  57. L 1   stability of patterns of non-interacting large shock waves, Indiana Univ. Math.  J. 49 (2000), 1515–1537. (2000) MR1836539
  58. 10.1006/jdeq.2000.4000, J.  Differential Equations 179 (2002), 133–177. (2002) MR1883740DOI10.1006/jdeq.2000.4000
  59. 10.1007/BF01625772, Comm. Math. Phys. 57 (1977), 135–148. (1977) Zbl0376.35042MR0470508DOI10.1007/BF01625772
  60. 10.1090/S0894-0347-99-00292-1, J.  Amer. Math. Soc. 12 (1999), 729–774. (1999) MR1646841DOI10.1090/S0894-0347-99-00292-1
  61. 10.1002/(SICI)1097-0312(199911)52:11<1427::AID-CPA2>3.0.CO;2-R, Comm. Pure Appl. Math. 52 (1999), 1427–1442. (1999) MR1702712DOI10.1002/(SICI)1097-0312(199911)52:11<1427::AID-CPA2>3.0.CO;2-R
  62. 10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S, Comm. Pure Appl. Math. 52 (1999), 1553–1586. (1999) MR1711037DOI10.1002/(SICI)1097-0312(199912)52:12<1553::AID-CPA3>3.0.CO;2-S
  63. Hyperbolic Conservation Laws and the Compensated Compactness Method. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, Vol.  128, Chapman & Hall/CRC, Boca Raton, 2003. (2003) MR1936672
  64. 10.1090/S0002-9939-1993-1120511-X, Proc. Amer. Math. Soc. 117 (1993), 1125–1139. (1993) Zbl0799.35153MR1120511DOI10.1090/S0002-9939-1993-1120511-X
  65. The essence of Glimm’s scheme, In: Nonlinear Evolutionary Partial Differential Equations (Beijing,  1993), AMS/IP Stud. Adv. Math., Vol. 3, Amer. Math. Soc., Providence, 1997, pp. 355–362. (1997) Zbl0882.35009MR1468507
  66. 10.1016/0022-0396(87)90189-6, J.  Differential Equations 68 (1987), 137–168. (1987) Zbl0627.35062MR0892021DOI10.1016/0022-0396(87)90189-6
  67. Systems of Conservation Laws, 1 & 2, Cambridge University Press, Cambridge, 1999, 2000, translated from the 1996  French original by I. N.  Sneddon. (1999, 2000) MR1707279
  68. 10.1007/BF00250857, Arch. Rational Mech. Anal. 81 (1983), 301–315. (1983) Zbl0505.76082MR0683192DOI10.1007/BF00250857
  69. 10.1090/S0002-9947-1983-0716850-2, Trans. Amer. Math. Soc. 280 (1983), 781–795. (1983) Zbl0559.35046MR0716850DOI10.1090/S0002-9947-1983-0716850-2
  70. L 1 -contractive metrics for systems of conservation laws, Trans. Amer. Math. Soc. 288 (1985), 471–480. (1985) MR0776388
  71. 10.1137/0142069, SIAM J.  Appl. Math. 42 (1982), 964–981. (1982) MR0673521DOI10.1137/0142069
  72. A priori estimates in hyperbolic systems of conservation laws via generalized characteristics, Comm. Partial Differential Equations 22 (1997), 235–267. (1997) Zbl0881.35018MR1434145
  73. 10.1007/BF01135253, Contin. Mech. Thermodyn. 6 (1994), 185–208. (1994) Zbl0877.73006MR1285921DOI10.1007/BF01135253

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.