Generalized characteristics uniqueness and regularity of solutions in a hyperbolic system of conservation laws

C. M. Dafermos; X. Geng

Annales de l'I.H.P. Analyse non linéaire (1991)

  • Volume: 8, Issue: 3-4, page 231-269
  • ISSN: 0294-1449

How to cite

top

Dafermos, C. M., and Geng, X.. "Generalized characteristics uniqueness and regularity of solutions in a hyperbolic system of conservation laws." Annales de l'I.H.P. Analyse non linéaire 8.3-4 (1991): 231-269. <http://eudml.org/doc/78253>.

@article{Dafermos1991,
author = {Dafermos, C. M., Geng, X.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {shock wave curves; generalized characteristics; uniqueness; regularity; Cauchy problem; hyperbolic conservation laws; rarefaction wave curves; isotach-ophoresis},
language = {eng},
number = {3-4},
pages = {231-269},
publisher = {Gauthier-Villars},
title = {Generalized characteristics uniqueness and regularity of solutions in a hyperbolic system of conservation laws},
url = {http://eudml.org/doc/78253},
volume = {8},
year = {1991},
}

TY - JOUR
AU - Dafermos, C. M.
AU - Geng, X.
TI - Generalized characteristics uniqueness and regularity of solutions in a hyperbolic system of conservation laws
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 3-4
SP - 231
EP - 269
LA - eng
KW - shock wave curves; generalized characteristics; uniqueness; regularity; Cauchy problem; hyperbolic conservation laws; rarefaction wave curves; isotach-ophoresis
UR - http://eudml.org/doc/78253
ER -

References

top
  1. [1] C.M. Dafermos, Characteristics in Hyperbolic Conservation Laws, Nonlinear Analysis and Mechanics, Vol. I, R. J. KNOPS Ed., London, Pitman, 1977, pp. 1-58. Zbl0373.35048MR481581
  2. [2] C.M. Dafermos, Generalized Characteristics and the Structure of Solutions of Hyperbolic Conservation Laws, Indiana Univ. Math. J., Vol. 26, 1977, pp. 1097-1119. Zbl0377.35051MR457947
  3. [3] C.M. Dafermos, Regularity and Large Time Behavior of Solutions of a Conservation Law Without Convexity, Proc. Roy. Soc. Edinb., Vol. 99 A, 1985, pp. 201-239. Zbl0616.35054MR785530
  4. [4] C.M. Dafermos, Dissipation in Materials With Memory, Viscoelasticity and Rheology, A. LODGE, J. A. NOHEL and M. RENARDY Eds., New York, Academic Press, 1985, pp. 221-234. Zbl0588.73072MR830204
  5. [5] C.M. Dafermos, Generalized Characteristics in Hyperbolic Systems of Conservation Laws, Arch. Rational Mech. Anal., Vol. 107, 1989, pp. 127-155. Zbl0714.35046MR996908
  6. [6] R.J. Diperna, Singularities of Solutions of Nonlinear Hyperbolic Systems of Conservation Laws, Arch. Rational Mech. Anal., Vol. 60, 1975, pp. 75-100. Zbl0324.35062MR393867
  7. [7] R.J. Diperna, Uniqueness of Solutions to Hyperbolic Conservation Laws, Indiana Univ. Math. J., Vol. 28, 1979, pp. 137-188. Zbl0409.35057MR523630
  8. [8] A.F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Mat. Sb. (N.S.), Vol. 51, 1960, pp. 99-128. English transl., Am. Math. Soc. Transl., Ser. 2, Vol. 42, pp. 199-231. Zbl0138.32204MR114016
  9. [9] Xiao Geng, The Conservation Laws in Isotachophoresis Model (to appear). 
  10. [10] J. Glimm, Solution in the Large for Nonlinear Hyperbolic Systems of Equations, Comm. Pure Appl. Math., Vol. 18, 1965, pp. 697-715. Zbl0141.28902MR194770
  11. [11] A.E. Hurd, A Uniqueness Theorem for Weak Solutions of Symmetric Quasilinear Hyperbolic Systems, Pacific J. Math., Vol. 28, 1969, pp. 555-559. Zbl0172.38305MR240454
  12. [12] P.D. Lax, Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math., Vol. 10, 1957, pp. 537-566. Zbl0081.08803MR93653
  13. [13] P.D. Lax, Shock Waves and Entropy, Contributions to Functional Analysis, E. A. ZARANTONELLO Ed., New York, Academic Press, 1971, pp. 603-634. Zbl0268.35014MR393870
  14. [14] R.J. Levesque and B. Temple, Stability of Godunov's Method for a Class of 2 × 2 Systems of Conservation Laws, Trans. Am. Math. Soc., Vol. 288, 1985, pp. 115-123. Zbl0561.65067MR773050
  15. [15] T.-P. Liu, Uniqueness of Weak Solutions of the Cauchy Problem for General 2 x 2 Conservation laws, J. Diff. Eqs., Vol. 20, 1976, pp. 369-388. Zbl0288.76031MR393871
  16. [16] O.A. Oleinik, Discontinuous Solutions of Nonlinear Differential Equations, Usp. Mat. Nauk (N.S.), Vol. 12, 1957, pp. 3-73. English Transl., Am. Math. Soc. Transl., Ser. 2, Vol. 26, pp. 95-172. Zbl0131.31803
  17. [17] O.A. Oleinik, On the Uniqueness of the Generalized Solution of the Cauchy Problem for a Nonlinear System of Equations Occurring in Mechanics, Usp. Mat. Nauk (N.S.), Vol. 12, 1957, pp. 169-176. Zbl0080.07702MR94543
  18. [18] D.G. Schaeffer, A Regularity Theorem for Conservation Laws, Adv. in Math., Vol. 11, 1973, pp. 368-386. Zbl0267.35009MR326178
  19. [19] D. Serre, Solutions à variations bornées pour certains systèmes hyperboliques de lois de conservatian, J. Diff. Eqs., Vol. 68, 1987, pp. 137-169. Zbl0627.35062MR892021
  20. [20] B. Temple, Systems of Conservation Laws with Invariant Submanifolds, Trans. Am. Math. Soc., Vol. 280, 1983, pp. 781-795. Zbl0559.35046MR716850

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.