Signorini problem with a solution dependent coefficient of friction (model with given friction): Approximation and numerical realization
Jaroslav Haslinger; Oldřich Vlach
Applications of Mathematics (2005)
- Volume: 50, Issue: 2, page 153-171
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topReferences
top- 10.1016/S0764-4442(01)02153-X, C. R. Acad. Sci. Paris, Sér. I 333 (2001), 1053–1058. (2001) MR1872471DOI10.1016/S0764-4442(01)02153-X
- 10.1137/S1052623494266250, SIAM J. Optim. 7 (1997), 871–887. (1997) MR1462070DOI10.1137/S1052623494266250
- 10.1142/S0218202598000196, Math. Models Methods Appl. Sci. 8 (1998), 445–468. (1998) MR1624879DOI10.1142/S0218202598000196
- 10.1016/S0045-7825(01)00378-4, Comput. Methods Appl. Mech. Eng. 191 (2002), 2261–2881. (2002) MR1903144DOI10.1016/S0045-7825(01)00378-4
- Numerical Solution of Variational Inequalities. Springer Series in Applied Mathematical Sciences 66, Springer-Verlag, New York, 1988. (1988) MR0952855
- 10.1023/A:1022220711369, Appl. Math. 45 (2000), 357–379. (2000) MR1777018DOI10.1023/A:1022220711369
- 10.1017/S0308210500013536, Proc. R. Soc. Edinb. Sect. A 98 (1984), 365–383. (1984) MR0768357DOI10.1017/S0308210500013536
- Contact Problems in Elasticity. A Study of Variational Inequalities and Finite Element Methods, Mathematics and Computer Science for Engineers, SIAM, Philadelphia, 1988. (1988) MR0961258
- On the solution of the variational inequality to the Signorini problem with small friction, Boll. Unione Mat. Ital. V. Ser., 17 (1980), 796–811. (1980) MR0580559