Rational Krylov for nonlinear eigenproblems, an iterative projection method
Elias Jarlebring; Heinrich Voss
Applications of Mathematics (2005)
- Volume: 50, Issue: 6, page 543-554
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topJarlebring, Elias, and Voss, Heinrich. "Rational Krylov for nonlinear eigenproblems, an iterative projection method." Applications of Mathematics 50.6 (2005): 543-554. <http://eudml.org/doc/33237>.
@article{Jarlebring2005,
abstract = {In recent papers Ruhe suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similarly to the Arnoldi method the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably by replacing an inner iteration by an explicit solver of projected problems.},
author = {Jarlebring, Elias, Voss, Heinrich},
journal = {Applications of Mathematics},
keywords = {nonlinear eigenvalue problem; rational Krylov method; Arnoldi method; projection method; nonlinear eigenvalue problem; rational Krylov method; Arnoldi method; projection method},
language = {eng},
number = {6},
pages = {543-554},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Rational Krylov for nonlinear eigenproblems, an iterative projection method},
url = {http://eudml.org/doc/33237},
volume = {50},
year = {2005},
}
TY - JOUR
AU - Jarlebring, Elias
AU - Voss, Heinrich
TI - Rational Krylov for nonlinear eigenproblems, an iterative projection method
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 6
SP - 543
EP - 554
AB - In recent papers Ruhe suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similarly to the Arnoldi method the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably by replacing an inner iteration by an explicit solver of projected problems.
LA - eng
KW - nonlinear eigenvalue problem; rational Krylov method; Arnoldi method; projection method; nonlinear eigenvalue problem; rational Krylov method; Arnoldi method; projection method
UR - http://eudml.org/doc/33237
ER -
References
top- 10.1090/qam/42792, Q. Appl. Math. 9 (1951), 17–29. (1951) Zbl0042.12801MR0042792DOI10.1090/qam/42792
- Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. A. van der Vorst (eds.), SIAM, Philadelphia, 2000. (2000) Zbl0965.65058MR1792141
- 10.1016/j.future.2003.07.003, Future Generation Computer Systems 20 (2004), 363–372. (2004) MR2213179DOI10.1016/j.future.2003.07.003
- 10.1016/0045-7825(89)90078-9, Comput. Methods Appl. Mech. Eng. 77 (1989), 253–291. (1989) MR1031134DOI10.1016/0045-7825(89)90078-9
- Eigenfrequency Analysis. FE-Adaptivity and a Nonlinear Eigenvalue Problem, PhD. thesis, Chalmers University of Technology, Göteborg, 2001. (2001)
- The rational Krylov algorithm for nonlinear eigenvalue problems, In: Computational Mechanics for the Twenty-First Century, B. H. V. Topping (ed.), Saxe-Coburg Publications, Edinburgh, 2000, pp. 379–402. (2000)
- Krylov Methods for Nonlinear Eigenvalue Problems, Master thesis, Royal Institute of Technology. Dept. Numer. Anal. Comput. Sci., Stockholm, 2003. (2003)
- On an application of Newton’s method to the determination of eigenvalues of -matrices, Dokl. Akad. Nauk. SSSR 188 (1969), 1240–1241. (1969) Zbl0242.65042MR0250470
- 10.1137/0707043, SIAM. J. Numer. Anal. 7 (1970), 532–537. (1970) Zbl0225.65048MR0281333DOI10.1137/0707043
- 10.6028/jres.045.026, J. Res. Nat. Bur. Standards 45 (1950), 255–282. (1950) MR0042791DOI10.6028/jres.045.026
- 10.1137/0722055, SIAM J. Numer. Anal. 22 (1985), 914–923. (1985) Zbl0594.65026MR0799120DOI10.1137/0722055
- 10.1016/0045-7825(82)90055-X, Comput. Methods Appl. Mech. Eng. 30 (1982), 75–93. (1982) Zbl0483.70016MR0659568DOI10.1016/0045-7825(82)90055-X
- 10.1137/0710059, SIAM J. Numer. Anal. 10 (1973), 674–689. (1973) Zbl0261.65032MR0329231DOI10.1137/0710059
- Computing nonlinear eigenvalues with spectral transformation Arnoldi, Z. Angew. Math. Mech. 76 (1996), 17–20. (1996) Zbl0886.65055
- 10.1137/S1064827595285597, SIAM J. Sci. Comput. 19 (1998), 1535–1551. (1998) Zbl0914.65036MR1618804DOI10.1137/S1064827595285597
- The rational Krylov algorithm for nonlinear matrix eigenvalue problems, Zap. Nauchn. Semin. POMI 268 (2000), 176–180. (2000) Zbl1029.65035MR1795855
- 10.1007/BF01731936, BIT 36 (1996), 595–633. (1996) MR1410100DOI10.1007/BF01731936
- 10.1137/S0895479894270427, SIAM J. Matrix Anal. Appl. 17 (1996), 401–425. (1996) MR1384515DOI10.1137/S0895479894270427
- 10.1023/B:BITN.0000039424.56697.8b, BIT 44 (2004), 387-401. (2004) Zbl1066.65059MR2093512DOI10.1023/B:BITN.0000039424.56697.8b
- An Arnoldi method for nonlinear symmetric eigenvalue problems, In: Online Proceedings of the SIAM Conference on Applied Linear Algebra, Williamsburg, 2003, http://www.siam.org/meetings/laa03/.
- Initializing iterative projection methods for rational symmetric eigenproblems, In: Online Proceedings of the Dagstuhl Seminar Theoretical and Computational Aspects of Matrix Algorithms, Schloss Dagstuhl 2003, ftp://ftp.dagstuhl.de/pub/Proceedings/03/03421/03421.VoszHeinrich.Other.pdf, 2003.
- A Jacobi-Davidson method for nonlinear eigenproblems, In: Computational Science—ICCS 2004, 4th International Conference, Kraków, Poland, June 6–9, 2004, Proceedings, Part II, Vol. 3037 of Lecture Notes in Computer Science, M. Buback, G. D. van Albada, P. M. A. Sloot, and J. J. Dongarra (eds.), Springer-Verlag, Berlin, 2004, pp. 34–41. (2004) Zbl1080.65535MR2213179
- 10.1002/mma.1670040126, Math. Methods Appl. Sci. 4 (1982), 415–424. (1982) MR0669135DOI10.1002/mma.1670040126
- 10.1002/nme.1620190613, Int. J. Numer. Methods Eng. 19 (1983), 943–948. (1983) Zbl0517.65018MR0708826DOI10.1002/nme.1620190613
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.