Rational Krylov for nonlinear eigenproblems, an iterative projection method

Elias Jarlebring; Heinrich Voss

Applications of Mathematics (2005)

  • Volume: 50, Issue: 6, page 543-554
  • ISSN: 0862-7940

Abstract

top
In recent papers Ruhe suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similarly to the Arnoldi method the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably by replacing an inner iteration by an explicit solver of projected problems.

How to cite

top

Jarlebring, Elias, and Voss, Heinrich. "Rational Krylov for nonlinear eigenproblems, an iterative projection method." Applications of Mathematics 50.6 (2005): 543-554. <http://eudml.org/doc/33237>.

@article{Jarlebring2005,
abstract = {In recent papers Ruhe suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similarly to the Arnoldi method the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably by replacing an inner iteration by an explicit solver of projected problems.},
author = {Jarlebring, Elias, Voss, Heinrich},
journal = {Applications of Mathematics},
keywords = {nonlinear eigenvalue problem; rational Krylov method; Arnoldi method; projection method; nonlinear eigenvalue problem; rational Krylov method; Arnoldi method; projection method},
language = {eng},
number = {6},
pages = {543-554},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Rational Krylov for nonlinear eigenproblems, an iterative projection method},
url = {http://eudml.org/doc/33237},
volume = {50},
year = {2005},
}

TY - JOUR
AU - Jarlebring, Elias
AU - Voss, Heinrich
TI - Rational Krylov for nonlinear eigenproblems, an iterative projection method
JO - Applications of Mathematics
PY - 2005
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 50
IS - 6
SP - 543
EP - 554
AB - In recent papers Ruhe suggested a rational Krylov method for nonlinear eigenproblems knitting together a secant method for linearizing the nonlinear problem and the Krylov method for the linearized problem. In this note we point out that the method can be understood as an iterative projection method. Similarly to the Arnoldi method the search space is expanded by the direction from residual inverse iteration. Numerical methods demonstrate that the rational Krylov method can be accelerated considerably by replacing an inner iteration by an explicit solver of projected problems.
LA - eng
KW - nonlinear eigenvalue problem; rational Krylov method; Arnoldi method; projection method; nonlinear eigenvalue problem; rational Krylov method; Arnoldi method; projection method
UR - http://eudml.org/doc/33237
ER -

References

top
  1. 10.1090/qam/42792, Q. Appl. Math. 9 (1951), 17–29. (1951) Zbl0042.12801MR0042792DOI10.1090/qam/42792
  2. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. A. van der  Vorst (eds.), SIAM, Philadelphia, 2000. (2000) Zbl0965.65058MR1792141
  3. 10.1016/j.future.2003.07.003, Future Generation Computer Systems 20 (2004), 363–372. (2004) MR2213179DOI10.1016/j.future.2003.07.003
  4. 10.1016/0045-7825(89)90078-9, Comput. Methods Appl. Mech. Eng. 77 (1989), 253–291. (1989) MR1031134DOI10.1016/0045-7825(89)90078-9
  5. Eigenfrequency Analysis. FE-Adaptivity and a Nonlinear Eigenvalue Problem, PhD. thesis, Chalmers University of Technology, Göteborg, 2001. (2001) 
  6. The rational Krylov algorithm for nonlinear eigenvalue problems, In: Computational Mechanics for the Twenty-First Century, B. H. V. Topping (ed.), Saxe-Coburg Publications, Edinburgh, 2000, pp. 379–402. (2000) 
  7. Krylov Methods for Nonlinear Eigenvalue Problems, Master thesis, Royal Institute of Technology. Dept. Numer. Anal. Comput. Sci., Stockholm, 2003. (2003) 
  8. On an application of Newton’s method to the determination of eigenvalues of λ -matrices, Dokl. Akad. Nauk. SSSR 188 (1969), 1240–1241. (1969) Zbl0242.65042MR0250470
  9. 10.1137/0707043, SIAM. J. Numer. Anal. 7 (1970), 532–537. (1970) Zbl0225.65048MR0281333DOI10.1137/0707043
  10. 10.6028/jres.045.026, J.  Res. Nat. Bur. Standards 45 (1950), 255–282. (1950) MR0042791DOI10.6028/jres.045.026
  11. 10.1137/0722055, SIAM J. Numer. Anal. 22 (1985), 914–923. (1985) Zbl0594.65026MR0799120DOI10.1137/0722055
  12. 10.1016/0045-7825(82)90055-X, Comput. Methods Appl. Mech. Eng. 30 (1982), 75–93. (1982) Zbl0483.70016MR0659568DOI10.1016/0045-7825(82)90055-X
  13. 10.1137/0710059, SIAM J. Numer. Anal. 10 (1973), 674–689. (1973) Zbl0261.65032MR0329231DOI10.1137/0710059
  14. Computing nonlinear eigenvalues with spectral transformation Arnoldi, Z.  Angew. Math. Mech. 76 (1996), 17–20. (1996) Zbl0886.65055
  15. 10.1137/S1064827595285597, SIAM J.  Sci. Comput. 19 (1998), 1535–1551. (1998) Zbl0914.65036MR1618804DOI10.1137/S1064827595285597
  16. The rational Krylov algorithm for nonlinear matrix eigenvalue problems, Zap. Nauchn. Semin. POMI 268 (2000), 176–180. (2000) Zbl1029.65035MR1795855
  17. 10.1007/BF01731936, BIT 36 (1996), 595–633. (1996) MR1410100DOI10.1007/BF01731936
  18. 10.1137/S0895479894270427, SIAM J. Matrix Anal. Appl. 17 (1996), 401–425. (1996) MR1384515DOI10.1137/S0895479894270427
  19. 10.1023/B:BITN.0000039424.56697.8b, BIT 44 (2004), 387-401. (2004) Zbl1066.65059MR2093512DOI10.1023/B:BITN.0000039424.56697.8b
  20. An Arnoldi method for nonlinear symmetric eigenvalue problems, In: Online Proceedings of the SIAM Conference on Applied Linear Algebra, Williamsburg, 2003, http://www.siam.org/meetings/laa03/. 
  21. Initializing iterative projection methods for rational symmetric eigenproblems, In: Online Proceedings of the Dagstuhl Seminar Theoretical and Computational Aspects of Matrix Algorithms, Schloss Dagstuhl 2003, ftp://ftp.dagstuhl.de/pub/Proceedings/03/03421/03421.VoszHeinrich.Other.pdf, 2003. 
  22. A Jacobi-Davidson method for nonlinear eigenproblems, In: Computational Science—ICCS  2004, 4th  International Conference, Kraków, Poland, June 6–9, 2004, Proceedings, Part  II, Vol. 3037 of Lecture Notes in Computer Science, M. Buback, G. D.  van Albada, P. M. A.  Sloot, and J. J.  Dongarra (eds.), Springer-Verlag, Berlin, 2004, pp. 34–41. (2004) Zbl1080.65535MR2213179
  23. 10.1002/mma.1670040126, Math. Methods Appl. Sci. 4 (1982), 415–424. (1982) MR0669135DOI10.1002/mma.1670040126
  24. 10.1002/nme.1620190613, Int. J.  Numer. Methods Eng. 19 (1983), 943–948. (1983) Zbl0517.65018MR0708826DOI10.1002/nme.1620190613

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.