Sparse finite element methods for operator equations with stochastic data

Tobias von Petersdorff; Christoph Schwab

Applications of Mathematics (2006)

  • Volume: 51, Issue: 2, page 145-180
  • ISSN: 0862-7940

Abstract

top
Let A V V ' be a strongly elliptic operator on a d -dimensional manifold D (polyhedra or boundaries of polyhedra are also allowed). An operator equation A u = f with stochastic data f is considered. The goal of the computation is the mean field and higher moments 1 u V , 2 u V V , ... , k u V V of the solution. We discretize the mean field problem using a FEM with hierarchical basis and N degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment k u for k 1 . The key tool in both algorithms is a “sparse tensor product” space for the approximation of k u with O ( N ( log N ) k - 1 ) degrees of freedom, instead of N k degrees of freedom for the full tensor product FEM space. A sparse Monte-Carlo FEM with M samples (i.e., deterministic solver) is proved to yield approximations to k u with a work of O ( M N ( log N ) k - 1 ) operations. The solutions are shown to converge with the optimal rates with respect to the Finite Element degrees of freedom N and the number M of samples. The deterministic FEM is based on deterministic equations for k u in D k k d . Their Galerkin approximation using sparse tensor products of the FE spaces in D allows approximation of k u with O ( N ( log N ) k - 1 ) degrees of freedom converging at an optimal rate (up to logs). For nonlocal operators wavelet compression of the operators is used. The linear systems are solved iteratively with multilevel preconditioning. This yields an approximation for k u with at most O ( N ( log N ) k + 1 ) operations.

How to cite

top

Petersdorff, Tobias von, and Schwab, Christoph. "Sparse finite element methods for operator equations with stochastic data." Applications of Mathematics 51.2 (2006): 145-180. <http://eudml.org/doc/33249>.

@article{Petersdorff2006,
abstract = {Let $A\: V\rightarrow V^\{\prime \}$ be a strongly elliptic operator on a $d$-dimensional manifold $D$ (polyhedra or boundaries of polyhedra are also allowed). An operator equation $Au=f$ with stochastic data $f$ is considered. The goal of the computation is the mean field and higher moments $\mathcal \{M\}^1 u\in V$, $\mathcal \{M\}^2u\in V\otimes V$, $\ldots $, $\mathcal \{M\}^k u \in V\otimes \cdots \otimes V$ of the solution. We discretize the mean field problem using a FEM with hierarchical basis and $N$ degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment $\mathcal \{M\}^k u$ for $k\ge 1$. The key tool in both algorithms is a “sparse tensor product” space for the approximation of $\mathcal \{M\}^k u$ with $O(N (\log N)^\{k-1\})$ degrees of freedom, instead of $N^k$ degrees of freedom for the full tensor product FEM space. A sparse Monte-Carlo FEM with $M$ samples (i.e., deterministic solver) is proved to yield approximations to $\{\mathcal \{M\}\}^k u$ with a work of $O(M N(\log N)^\{k-1\})$ operations. The solutions are shown to converge with the optimal rates with respect to the Finite Element degrees of freedom $N$ and the number $M$ of samples. The deterministic FEM is based on deterministic equations for $\{\mathcal \{M\}\}^k u$ in $D^k\subset \mathbb \{R\}^\{kd\}$. Their Galerkin approximation using sparse tensor products of the FE spaces in $D$ allows approximation of $\{\mathcal \{M\}\}^k u$ with $O(N(\log N)^\{k-1\})$ degrees of freedom converging at an optimal rate (up to logs). For nonlocal operators wavelet compression of the operators is used. The linear systems are solved iteratively with multilevel preconditioning. This yields an approximation for $\mathcal \{M\}^k u$ with at most $O(N (\log N)^\{k+1\})$ operations.},
author = {Petersdorff, Tobias von, Schwab, Christoph},
journal = {Applications of Mathematics},
keywords = {wavelet compression of operators; random data; Monte-Carlo method; wavelet finite element method; wavelet compression of operators; random data; Monte-Carlo method; wavelet finite element method; strongly elliptic operator; mean field problem; algorithm; moment; sparse tensor product; Galerkin approximation; multilevel preconditioning},
language = {eng},
number = {2},
pages = {145-180},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Sparse finite element methods for operator equations with stochastic data},
url = {http://eudml.org/doc/33249},
volume = {51},
year = {2006},
}

TY - JOUR
AU - Petersdorff, Tobias von
AU - Schwab, Christoph
TI - Sparse finite element methods for operator equations with stochastic data
JO - Applications of Mathematics
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 2
SP - 145
EP - 180
AB - Let $A\: V\rightarrow V^{\prime }$ be a strongly elliptic operator on a $d$-dimensional manifold $D$ (polyhedra or boundaries of polyhedra are also allowed). An operator equation $Au=f$ with stochastic data $f$ is considered. The goal of the computation is the mean field and higher moments $\mathcal {M}^1 u\in V$, $\mathcal {M}^2u\in V\otimes V$, $\ldots $, $\mathcal {M}^k u \in V\otimes \cdots \otimes V$ of the solution. We discretize the mean field problem using a FEM with hierarchical basis and $N$ degrees of freedom. We present a Monte-Carlo algorithm and a deterministic algorithm for the approximation of the moment $\mathcal {M}^k u$ for $k\ge 1$. The key tool in both algorithms is a “sparse tensor product” space for the approximation of $\mathcal {M}^k u$ with $O(N (\log N)^{k-1})$ degrees of freedom, instead of $N^k$ degrees of freedom for the full tensor product FEM space. A sparse Monte-Carlo FEM with $M$ samples (i.e., deterministic solver) is proved to yield approximations to ${\mathcal {M}}^k u$ with a work of $O(M N(\log N)^{k-1})$ operations. The solutions are shown to converge with the optimal rates with respect to the Finite Element degrees of freedom $N$ and the number $M$ of samples. The deterministic FEM is based on deterministic equations for ${\mathcal {M}}^k u$ in $D^k\subset \mathbb {R}^{kd}$. Their Galerkin approximation using sparse tensor products of the FE spaces in $D$ allows approximation of ${\mathcal {M}}^k u$ with $O(N(\log N)^{k-1})$ degrees of freedom converging at an optimal rate (up to logs). For nonlocal operators wavelet compression of the operators is used. The linear systems are solved iteratively with multilevel preconditioning. This yields an approximation for $\mathcal {M}^k u$ with at most $O(N (\log N)^{k+1})$ operations.
LA - eng
KW - wavelet compression of operators; random data; Monte-Carlo method; wavelet finite element method; wavelet compression of operators; random data; Monte-Carlo method; wavelet finite element method; strongly elliptic operator; mean field problem; algorithm; moment; sparse tensor product; Galerkin approximation; multilevel preconditioning
UR - http://eudml.org/doc/33249
ER -

References

top
  1. On randomized solution of Laplace’s equation, Čas. Pěst. Mat. 86 (1961), 269–276. (1961) 
  2. 10.1007/BF02165003, Numer. Math. 16 (1971), 322–333. (1971) MR0288971DOI10.1007/BF02165003
  3. 10.1137/S0036142902418680, SIAM J. Numer. Anal. 42 (2004), 800–825. (2004) MR2084236DOI10.1137/S0036142902418680
  4. Gaussian Measures. AMS Mathematical Surveys and Monographs Vol.  62, AMS, Providence, 1998. (1998) MR1642391
  5. Probability, Addison-Wesley, Reading, 1968. (1968) Zbl0174.48801MR0229267
  6. 10.1007/BFb0075392, Springer-Verlag, Berlin, 1985. (1985) MR0817984DOI10.1007/BFb0075392
  7. The Finite Element Method for Elliptic Problems, Elsevier Publ. North Holland, Amsterdam, 1978. (1978) Zbl0383.65058MR0520174
  8. 10.1137/S0036142903428852, SIAM J. Numer. Anal. 43 (2006), 2251–2271. (2006) MR2206435DOI10.1137/S0036142903428852
  9. 10.1137/S0036142997330949, SIAM J.  Numer. Anal. 37 (1999), 319–352. (1999) MR1742747DOI10.1137/S0036142997330949
  10. 10.1137/0720023, SIAM J.  Numer. Anal. 20 (1983), 345–357. (1983) MR0694523DOI10.1137/0720023
  11. 10.1007/s002110050450, Numer. Math. 83 (1999), 279–312. (1999) MR1712687DOI10.1007/s002110050450
  12. 10.1002/cpa.3160170309, Commun. Pure Appl. Math. 17 (1964), 369–373. (1964) MR0166608DOI10.1002/cpa.3160170309
  13. 10.1016/0022-247X(77)90186-X, J.  Math. Anal. Appl. 58 (1977), 449–481. (1977) MR0461963DOI10.1016/0022-247X(77)90186-X
  14. Gaussian Hilbert Spaces, Cambridge University Press, Cambridge, 1997. (1997) Zbl0887.60009MR1474726
  15. Numerical analysis of elliptic partial differential equations with stochastic input data, Doctoral Dissertation, Univ. of Maryland, 1985. (1985) 
  16. Probability in Banach Spaces. Isoperimetry and Processes, Springer-Verlag, Berlin, 1991. (1991) MR1102015
  17. Stochastic Analysis, Springer-Verlag, Berlin, 1997. (1997) Zbl0878.60001MR1450093
  18. Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000. (2000) Zbl0948.35001MR1742312
  19. Une méthode variationelle d’éléments finis pour la résolution numérique d’un problème extérieur dans 3 , RAIRO Anal. Numér. 7 (1973), 105–129. (1973) MR0424022
  20. 10.1016/S0955-7997(02)00156-X, Eng. Anal. Bound. Elem. 27 (2003), 469–490. (2003) DOI10.1016/S0955-7997(02)00156-X
  21. 10.1007/s002110050226, Numer. Math. 74 (1996), 479–516. (1996) MR1414419DOI10.1007/s002110050226
  22. 10.1051/m2an:2004005, M2AN, Math. Model. Numer. Anal. 38 (2004), 93–127. (2004) MR2073932DOI10.1051/m2an:2004005
  23. Multiskalen- und Wavelet-Matrixkompression. Advances in Numerical Mathematics, Teubner, Stuttgart, 1998. (1998) MR1623209
  24. 10.1007/s00211-003-0455-z, Numer. Math. 95 (2003), 707–734. (2003) MR2013125DOI10.1007/s00211-003-0455-z
  25. 10.1007/s00607-003-0024-4, Computing 71 (2003), 43–63. (2003) MR2009650DOI10.1007/s00607-003-0024-4
  26. Quadrature and interpolation formulas for tensor products of certain classes of functions, Sov. Math. Dokl. 4 (1963), 240–243. (1963) Zbl0202.39901
  27. Approximation of Periodic Functions, Nova Science Publ., New York, 1994. (1994) MR1373654
  28. 10.1006/jcom.1995.1001, J.  Complexity 11 (1995), 1–56. (1995) MR1319049DOI10.1006/jcom.1995.1001
  29. 10.2307/2371268, Amer. J.  Math. 60 (1938), 987–936. (1938) Zbl0019.35406MR1507356DOI10.2307/2371268

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.