On an elasto-dynamic evolution equation with non dead load and friction

Oanh Chau

Applications of Mathematics (2006)

  • Volume: 51, Issue: 3, page 229-246
  • ISSN: 0862-7940

Abstract

top
In this paper, we are interested in the dynamic evolution of an elastic body, acted by resistance forces depending also on the displacements. We put the mechanical problem into an abstract functional framework, involving a second order nonlinear evolution equation with initial conditions. After specifying convenient hypotheses on the data, we prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method.

How to cite

top

Chau, Oanh. "On an elasto-dynamic evolution equation with non dead load and friction." Applications of Mathematics 51.3 (2006): 229-246. <http://eudml.org/doc/33252>.

@article{Chau2006,
abstract = {In this paper, we are interested in the dynamic evolution of an elastic body, acted by resistance forces depending also on the displacements. We put the mechanical problem into an abstract functional framework, involving a second order nonlinear evolution equation with initial conditions. After specifying convenient hypotheses on the data, we prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method.},
author = {Chau, Oanh},
journal = {Applications of Mathematics},
keywords = {evolution equation; existence and uniqueness; Faedo-Galerkin method; friction; elasticity; dynamic process; evolution equation; existence and uniqueness; friction; elasticity; dynamic process},
language = {eng},
number = {3},
pages = {229-246},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On an elasto-dynamic evolution equation with non dead load and friction},
url = {http://eudml.org/doc/33252},
volume = {51},
year = {2006},
}

TY - JOUR
AU - Chau, Oanh
TI - On an elasto-dynamic evolution equation with non dead load and friction
JO - Applications of Mathematics
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 3
SP - 229
EP - 246
AB - In this paper, we are interested in the dynamic evolution of an elastic body, acted by resistance forces depending also on the displacements. We put the mechanical problem into an abstract functional framework, involving a second order nonlinear evolution equation with initial conditions. After specifying convenient hypotheses on the data, we prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method.
LA - eng
KW - evolution equation; existence and uniqueness; Faedo-Galerkin method; friction; elasticity; dynamic process; evolution equation; existence and uniqueness; friction; elasticity; dynamic process
UR - http://eudml.org/doc/33252
ER -

References

top
  1. Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, 1976. (1976) Zbl0328.47035MR0390843
  2. Analyse fonctionnelle. Théorie et Application, Masson, Paris, 1983. (1983) MR0697382
  3. 10.1007/BF01162382, Math.  Z. 80 (1962), 249–264. (1962) Zbl0109.32102MR0147769DOI10.1007/BF01162382
  4. An Introduction to Semilinear Evolution Equations, Clarendon Press, Oxford, 1998. (1998) MR1691574
  5. 10.1016/S0377-0427(02)00909-3, J.  Comput. Appl. Math. 156 (2003), 127–157. (2003) MR1982938DOI10.1016/S0377-0427(02)00909-3
  6. Mathematical Elasticity, Vol.  I: Three-dimmensional Elasticity, North Holland, Amsterdam, 1988. (1988) MR0936420
  7. Mathematical Analysis and Numerical Methods for Science and Technology, Tome  5, Springer-Verlag, Berlin, 2000. (2000) 
  8. Inequalities in Mechanics and Physics, Springer-Verlag, Berlin-Heidelberg-New York, 1976. (1976) MR0521262
  9. Dynamic contact problems with given friction for viscoelastic bodies, Czech. Math. J. 46(121) (1996), 475–487. (1996) MR1408299
  10. 10.1142/S0218202599000038, Math. Models Methods Appl. Sci. 9 (1999), 11–34. (1999) MR1671535DOI10.1142/S0218202599000038
  11. Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969. (1969) Zbl0189.40603MR0259693
  12. Linear and quasi-linear equations of evolution of hyperbolic type, Hyperbolicity, C.I.M.E., II. ciclo, Cortona 1976, Liguori, Napoli, 1977, pp. 125–191. (1977) Zbl0456.35052
  13. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods, SIAM publications, Philadelphia, 1988. (1988) MR0961258
  14. Problèmes aux limites non homogènes et applications, Vol.  1, Dunod, Paris, 1968. (1968) MR0247243
  15. 10.1016/0045-7825(85)90009-X, Comput. Methods Appl. Mech. Eng. 52 (1985), 527–634. (1985) MR0822757DOI10.1016/0045-7825(85)90009-X
  16. Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction, Elsevier, Amsterdam, 1981. (1981) MR0600655
  17. Equations of Evolution, Pitman, London, 1979. (1979) Zbl0417.35003MR0533824
  18. Mathematical modelling of rods, In: Handbook of Numerical Analysis, Vol.  IV, P. G.  Ciarlet, J.-L. Lions (eds.), North Holland, Amsterdam, 1996, pp. 487–974. (1996) MR1422507
  19. Nonlinear Functional Analysis and Its Applications, II/A: Linear Monotone Operators, Springer-Verlag, New York, 1990. (1990) Zbl0684.47028MR1033497
  20. Nonlinear Functional Analysis and Its Applications, II/B: Non-linear Monotone Operators, Springer-Verlag, New York, 1990. (1990) MR1033498

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.