On stability of the element for incompressible flow problems
Applications of Mathematics (2006)
- Volume: 51, Issue: 5, page 473-493
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topKnobloch, Petr. "On stability of the $P^{\rm mod}_ n/P_ n$ element for incompressible flow problems." Applications of Mathematics 51.5 (2006): 473-493. <http://eudml.org/doc/33263>.
@article{Knobloch2006,
abstract = {It is well known that finite element spaces used for approximating the velocity and the pressure in an incompressible flow problem have to be stable in the sense of the inf-sup condition of Babuška and Brezzi if a stabilization of the incompressibility constraint is not applied. In this paper we consider a recently introduced class of triangular nonconforming finite elements of $n$th order accuracy in the energy norm called $P_n^\{\}$ elements. For $n\le 3$ we show that the stability condition holds if the velocity space is constructed using the $P_n^\{\}$ elements and the pressure space consists of continuous piecewise polynomial functions of degree $n$.},
author = {Knobloch, Petr},
journal = {Applications of Mathematics},
keywords = {nonconforming finite element method; inf-sup condition; incompressible flow problem; nonconforming finite element method; inf-sup condition; incompressible flow problem; incompressible flow},
language = {eng},
number = {5},
pages = {473-493},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On stability of the $P^\{\rm mod\}_ n/P_ n$ element for incompressible flow problems},
url = {http://eudml.org/doc/33263},
volume = {51},
year = {2006},
}
TY - JOUR
AU - Knobloch, Petr
TI - On stability of the $P^{\rm mod}_ n/P_ n$ element for incompressible flow problems
JO - Applications of Mathematics
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 5
SP - 473
EP - 493
AB - It is well known that finite element spaces used for approximating the velocity and the pressure in an incompressible flow problem have to be stable in the sense of the inf-sup condition of Babuška and Brezzi if a stabilization of the incompressibility constraint is not applied. In this paper we consider a recently introduced class of triangular nonconforming finite elements of $n$th order accuracy in the energy norm called $P_n^{}$ elements. For $n\le 3$ we show that the stability condition holds if the velocity space is constructed using the $P_n^{}$ elements and the pressure space consists of continuous piecewise polynomial functions of degree $n$.
LA - eng
KW - nonconforming finite element method; inf-sup condition; incompressible flow problem; nonconforming finite element method; inf-sup condition; incompressible flow problem; incompressible flow
UR - http://eudml.org/doc/33263
ER -
References
top- 10.1093/imanum/22.2.307, IMA J. Numer. Anal. 22 (2002), 307–327. (2002) MR1897411DOI10.1093/imanum/22.2.307
- 10.1051/m2an:2000111, M2AN, Math. Model. Numer. Anal. 34 (2000), 953–980. (2000) MR1837763DOI10.1051/m2an:2000111
- 10.1137/0720048, SIAM J. Numer. Anal. 20 (1983), 722–731. (1983) MR0708453DOI10.1137/0720048
- Mixed and Hybrid Finite Element Methods, Springer-Verlag, New York, 1991. (1991) MR1115205
- Basic error estimates for elliptic problems, In: Handbook of Numerical Analysis, Vol. II: Finite Element Methods (Part 1), P. G. Ciarlet, J.-L. Lions (eds.), North-Holland, Amsterdam, 1991, pp. 17–351. (1991) Zbl0875.65086MR1115237
- Conforming and nonconforming finite element methods for solving the stationary Stokes equations I, Rev. Franc. Automat. Inform. Rech. Operat. 7 (1973), 33–76. (1973) MR0343661
- 10.1090/S0025-5718-1989-0958870-8, Math. Comput. 52 (1989), 437–456. (1989) MR0958870DOI10.1090/S0025-5718-1989-0958870-8
- Finite Element Methods for Navier-Stokes Equations, Springer-Verlag, Berlin, 1986. (1986) MR0851383
- Parallele Lösung der inkompressiblen Navier-Stokes Gleichungen auf adaptiv verfeinerten Gittern, PhD. Thesis, Otto-von-Guericke-Universität, Magdeburg, 1997. (1997)
- 10.1007/s00607-002-1444-2, Computing 68 (2002), 313–341. (2002) MR1921254DOI10.1007/s00607-002-1444-2
- 10.1007/s00791-004-0127-2, Comput. Visual. Sci. 6 (2004), 185–195. (2004) MR2071439DOI10.1007/s00791-004-0127-2
- New nonconforming finite elements for solving the incompressible Navier-Stokes equations, In: Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2001, F. Brezzi et al. (eds.), Springer-Verlag Italia, Milano, 2003, pp. 123–132. (2003) Zbl1283.76033MR2360713
- On the inf-sup condition for the element, Computing 76 (2006), 41–54. (2006) MR2174350
- 10.1137/S0036142902402158, SIAM J. Numer. Anal. 41 (2003), 436–456. (2003) MR2004183DOI10.1137/S0036142902402158
- Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen, Habilitationsschrift, Otto-von-Guericke-Universität, Magdeburg, 1997. (German) (1997) Zbl0915.76051
- 10.1051/m2an/1985190101111, RAIRO, Modélisation Math. Anal. Numér. 19 (1985), 111–143. (1985) MR0813691DOI10.1051/m2an/1985190101111
- Analysis of mixed finite element methods for the Stokes problem: a unified approach, Math. Comput. 42 (1984), 9–23. (1984) Zbl0535.76037MR0725982
- Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational Approach, Springer-Verlag, Berlin, 1999. (1999) Zbl0930.76002MR1691839
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.