More pressure in the finite element discretization of the Stokes problem
Christine Bernardi; Frédéric Hecht
- Volume: 34, Issue: 5, page 953-980
- ISSN: 0764-583X
Access Full Article
topHow to cite
topBernardi, Christine, and Hecht, Frédéric. "More pressure in the finite element discretization of the Stokes problem." ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique 34.5 (2000): 953-980. <http://eudml.org/doc/194027>.
@article{Bernardi2000,
author = {Bernardi, Christine, Hecht, Frédéric},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique},
keywords = {Stokes problem; mixed finite element discretization; nonconforming approximation of velocity; approximation of pressure; inf-sup condition; error estimates},
language = {eng},
number = {5},
pages = {953-980},
publisher = {Dunod},
title = {More pressure in the finite element discretization of the Stokes problem},
url = {http://eudml.org/doc/194027},
volume = {34},
year = {2000},
}
TY - JOUR
AU - Bernardi, Christine
AU - Hecht, Frédéric
TI - More pressure in the finite element discretization of the Stokes problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
PY - 2000
PB - Dunod
VL - 34
IS - 5
SP - 953
EP - 980
LA - eng
KW - Stokes problem; mixed finite element discretization; nonconforming approximation of velocity; approximation of pressure; inf-sup condition; error estimates
UR - http://eudml.org/doc/194027
ER -
References
top- [1] K. Arrow, L. Hurwicz and H. Uzawa, Studies in Nonlinear Programming. Stanford University Press, Stanford (1958). Zbl0091.16002MR108399
- [2] I. Babuška, The finite element method with Lagrangian multipliers. Numer. Math. 20 (1973) 179-192. Zbl0258.65108MR359352
- [3] C. Bergé, Théorie des graphes. Dunod, Paris (1970). Zbl0121.40101
- [4] J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20(1983) 722-731. Zbl0521.76027MR708453
- [5] F. Brezzi, On the existence, uniqueness and approximation of saddle-point problems arising from Lagrange multipliers. RAIRO - Anal. Numér. 8 R2 (1974) 129-151. Zbl0338.90047MR365287
- [6] P.G. Ciarlet, Basic Error Estimates for Elliptic Problems, in the Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1991) 17-351. Zbl0875.65086MR1115237
- [7] P. Clément, Développement et applications de méthodes numériques volumes finis pour la description d'écoulements océaniques. Thesis, Université Joseph Fourier, Grenoble (1996).
- [8] M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO - Anal. Numér. 7 R3 (1973) 33-76. Zbl0302.65087MR343661
- [9] P. Emonot, Méthodes de volumes éléments finis : application aux équations de Navier-Stokes et résultats de convergence. Thesis, Université Claude Bernard, Lyon (1992).
- [10] M. Fortin, An analysis of the convergence of mixed finite element methods. RAIRO - Anal. Numér. 11 R3 (1977) 341-354. Zbl0373.65055MR464543
- [11] V. Girault and P.-A. Raviart, Finite Element Methods for the Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag, Berlin (1986). Zbl0585.65077MR851383
- [12] F. Hecht, Construction d'une base d'un élément fini P1 non conforme à divergence nulle dans ℝ3. Thesis, Université Pierre et Marie Curie, Paris (1980).
- [13] F. Hecht, Construction d'une base de fonctions P1 non conforme à divergence nulle dans ℝ3. RAIRO - Anal. Numér. 15 (1981) 119-150. Zbl0471.76028MR618819
- [14] R. Verfürth, Error estimates for a mixed finite element approximation of the Stokes equations. RAIRO - Anal. Numér. 18 (1984) 175-182. Zbl0557.76037MR743884
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.