On a multiplicative type sum form functional equation and its role in information theory

Prem Nath; Dhiraj Kumar Singh

Applications of Mathematics (2006)

  • Volume: 51, Issue: 5, page 495-516
  • ISSN: 0862-7940

Abstract

top
In this paper, we obtain all possible general solutions of the sum form functional equations i = 1 k j = 1 f ( p i q j ) = i = 1 k g ( p i ) j = 1 h ( q j ) and i = 1 k j = 1 F ( p i q j ) = i = 1 k G ( p i ) + j = 1 H ( q j ) + λ i = 1 k G ( p i ) j = 1 H ( q j ) valid for all complete probability distributions ( p 1 , ... , p k ) , ( q 1 , ... , q ) , k 3 , 3 fixed integers; λ , λ 0 and F , G , H , f , g , h are real valued mappings each having the domain I = [ 0 , 1 ] , the unit closed interval.

How to cite

top

Nath, Prem, and Singh, Dhiraj Kumar. "On a multiplicative type sum form functional equation and its role in information theory." Applications of Mathematics 51.5 (2006): 495-516. <http://eudml.org/doc/33264>.

@article{Nath2006,
abstract = {In this paper, we obtain all possible general solutions of the sum form functional equations \[ \begin\{@align\}\{1\}\{-1\}\sum \_\{i=1\}^\{k\}\sum \_\{j=1\}^\{\ell \}f(p\_iq\_j)=&\sum \_\{i=1\}^\{k\}g(p\_i) \sum \_\{j=1\}^\{\ell \}h(q\_j)\\ \text\{and\} \sum \_\{i=1\}^\{k\}\sum \_\{j=1\}^\{\ell \}F(p\_iq\_j)=&\sum \_\{i=1\}^\{k\} G(p\_i)+\sum \_\{j=1\}^\{\ell \}H(q\_j)+ \lambda \sum \_\{i=1\}^\{k\}G(p\_i)\sum \_\{j=1\}^\{\ell \}H(q\_j) \end\{@align\}\] valid for all complete probability distributions $(p_1,\ldots ,p_k)$, $(q_1,\ldots ,q_\ell )$, $k\ge 3$, $\ell \ge 3$ fixed integers; $\lambda \in \mathbb \{R\}$, $\lambda \ne 0$ and $F$, $G$, $H$, $f$, $g$, $h$ are real valued mappings each having the domain $I=[0,1]$, the unit closed interval.},
author = {Nath, Prem, Singh, Dhiraj Kumar},
journal = {Applications of Mathematics},
keywords = {sum form functional equation; additive function; multiplicative function; sum form functional equation; additive function; multiplicative function; real functions; general solutions},
language = {eng},
number = {5},
pages = {495-516},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a multiplicative type sum form functional equation and its role in information theory},
url = {http://eudml.org/doc/33264},
volume = {51},
year = {2006},
}

TY - JOUR
AU - Nath, Prem
AU - Singh, Dhiraj Kumar
TI - On a multiplicative type sum form functional equation and its role in information theory
JO - Applications of Mathematics
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 5
SP - 495
EP - 516
AB - In this paper, we obtain all possible general solutions of the sum form functional equations \[ \begin{@align}{1}{-1}\sum _{i=1}^{k}\sum _{j=1}^{\ell }f(p_iq_j)=&\sum _{i=1}^{k}g(p_i) \sum _{j=1}^{\ell }h(q_j)\\ \text{and} \sum _{i=1}^{k}\sum _{j=1}^{\ell }F(p_iq_j)=&\sum _{i=1}^{k} G(p_i)+\sum _{j=1}^{\ell }H(q_j)+ \lambda \sum _{i=1}^{k}G(p_i)\sum _{j=1}^{\ell }H(q_j) \end{@align}\] valid for all complete probability distributions $(p_1,\ldots ,p_k)$, $(q_1,\ldots ,q_\ell )$, $k\ge 3$, $\ell \ge 3$ fixed integers; $\lambda \in \mathbb {R}$, $\lambda \ne 0$ and $F$, $G$, $H$, $f$, $g$, $h$ are real valued mappings each having the domain $I=[0,1]$, the unit closed interval.
LA - eng
KW - sum form functional equation; additive function; multiplicative function; sum form functional equation; additive function; multiplicative function; real functions; general solutions
UR - http://eudml.org/doc/33264
ER -

References

top
  1. 10.1007/BF01901932, Acta Math. Acad. Sci. Hungar. 14 (1963), 95–121. (German) (1963) MR0191738DOI10.1007/BF01901932
  2. On Measures of Information and Their Characterizations, Academic Press, New York-San Francisco-London, 1975. (1975) MR0689178
  3. Additive and non-additive entropies of finite measurable partitions, Probab. Inform. Theory  II. Lect. Notes Math. Vol.  296, Springer-Verlag, Berlin-Heidelberg-New York, 1973, pp. 102–138. (1973) MR0379019
  4. 10.1017/S0950184300003244, Edinburgh Math. Notes 43 (1960), 7–8. (1960) MR0151748DOI10.1017/S0950184300003244
  5. 10.1007/BF01895986, Acta Math. Acad. Sci. Hungar. 22 (1971), 11–14. (1971) MR0293280DOI10.1007/BF01895986
  6. 10.1007/BF01902599, Acta Math. Acad. Sci. Hungar. 34 (1979), 105–116. (1979) MR0546725DOI10.1007/BF01902599
  7. Über die Erweiterung der auf einer Punktmenge additiven Funktionen, Publ. Math. 14 (1967), 239–245. (German) (1967) MR0240492
  8. Some functional equations connected with entropy, Bull. Calcutta Math. Soc. 80 (1988), 96–100. (1988) Zbl0654.39004MR0956797
  9. Quantification method of classification process. Concept of structural α -entropy, Kybernetika 3 (1967), 30–35. (1967) MR0209067
  10. 10.1017/S0013091500003023, Proc. Edinb. Math. Soc., II. Sér. 23 (1980), 145–150. (1980) MR0597119DOI10.1017/S0013091500003023
  11. On a generalization of some measures in information theory, Glas. Mat., III. Sér. 9 (1974), 81–93. (1974) Zbl0287.39006MR0363671
  12. 10.1007/BF01902897, Metrika 28 (1981), 237–244. (1981) Zbl0469.94005MR0642931DOI10.1007/BF01902897
  13. Functional equations of sum form, Publ. Math. 32 (1985), 57–71. (1985) Zbl0588.39005MR0810591
  14. 10.1007/BF01895217, Acta Math. Acad. Sci. Hungar. 39 (1982), 73–82. (1982) MR0653676DOI10.1007/BF01895217
  15. 10.1007/BF01895147, Acta Math. Acad. Sci. Hungar. 37 (1981), 445–450. (1981) Zbl0472.39003MR0619897DOI10.1007/BF01895147
  16. 10.1007/BF01902848, Metrika 23 (1976), 31–40. (1976) Zbl0333.39006MR0415111DOI10.1007/BF01902848
  17. A mathematical theory of communication, Bell Syst. Tech. Jour. 27 (1948), 378–423, 623–656. (1948) Zbl1154.94303MR0026286
  18. Bounds on the minimal error probability on checking a finite or countable number of hypotheses, Probl. Inf. Transm. 4 (1968), 9–19. (1968) MR0267685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.