On a multiplicative type sum form functional equation and its role in information theory
Applications of Mathematics (2006)
- Volume: 51, Issue: 5, page 495-516
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topNath, Prem, and Singh, Dhiraj Kumar. "On a multiplicative type sum form functional equation and its role in information theory." Applications of Mathematics 51.5 (2006): 495-516. <http://eudml.org/doc/33264>.
@article{Nath2006,
abstract = {In this paper, we obtain all possible general solutions of the sum form functional equations \[ \begin\{@align\}\{1\}\{-1\}\sum \_\{i=1\}^\{k\}\sum \_\{j=1\}^\{\ell \}f(p\_iq\_j)=&\sum \_\{i=1\}^\{k\}g(p\_i) \sum \_\{j=1\}^\{\ell \}h(q\_j)\\ \text\{and\} \sum \_\{i=1\}^\{k\}\sum \_\{j=1\}^\{\ell \}F(p\_iq\_j)=&\sum \_\{i=1\}^\{k\} G(p\_i)+\sum \_\{j=1\}^\{\ell \}H(q\_j)+ \lambda \sum \_\{i=1\}^\{k\}G(p\_i)\sum \_\{j=1\}^\{\ell \}H(q\_j) \end\{@align\}\]
valid for all complete probability distributions $(p_1,\ldots ,p_k)$, $(q_1,\ldots ,q_\ell )$, $k\ge 3$, $\ell \ge 3$ fixed integers; $\lambda \in \mathbb \{R\}$, $\lambda \ne 0$ and $F$, $G$, $H$, $f$, $g$, $h$ are real valued mappings each having the domain $I=[0,1]$, the unit closed interval.},
author = {Nath, Prem, Singh, Dhiraj Kumar},
journal = {Applications of Mathematics},
keywords = {sum form functional equation; additive function; multiplicative function; sum form functional equation; additive function; multiplicative function; real functions; general solutions},
language = {eng},
number = {5},
pages = {495-516},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a multiplicative type sum form functional equation and its role in information theory},
url = {http://eudml.org/doc/33264},
volume = {51},
year = {2006},
}
TY - JOUR
AU - Nath, Prem
AU - Singh, Dhiraj Kumar
TI - On a multiplicative type sum form functional equation and its role in information theory
JO - Applications of Mathematics
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 5
SP - 495
EP - 516
AB - In this paper, we obtain all possible general solutions of the sum form functional equations \[ \begin{@align}{1}{-1}\sum _{i=1}^{k}\sum _{j=1}^{\ell }f(p_iq_j)=&\sum _{i=1}^{k}g(p_i) \sum _{j=1}^{\ell }h(q_j)\\ \text{and} \sum _{i=1}^{k}\sum _{j=1}^{\ell }F(p_iq_j)=&\sum _{i=1}^{k} G(p_i)+\sum _{j=1}^{\ell }H(q_j)+ \lambda \sum _{i=1}^{k}G(p_i)\sum _{j=1}^{\ell }H(q_j) \end{@align}\]
valid for all complete probability distributions $(p_1,\ldots ,p_k)$, $(q_1,\ldots ,q_\ell )$, $k\ge 3$, $\ell \ge 3$ fixed integers; $\lambda \in \mathbb {R}$, $\lambda \ne 0$ and $F$, $G$, $H$, $f$, $g$, $h$ are real valued mappings each having the domain $I=[0,1]$, the unit closed interval.
LA - eng
KW - sum form functional equation; additive function; multiplicative function; sum form functional equation; additive function; multiplicative function; real functions; general solutions
UR - http://eudml.org/doc/33264
ER -
References
top- 10.1007/BF01901932, Acta Math. Acad. Sci. Hungar. 14 (1963), 95–121. (German) (1963) MR0191738DOI10.1007/BF01901932
- On Measures of Information and Their Characterizations, Academic Press, New York-San Francisco-London, 1975. (1975) MR0689178
- Additive and non-additive entropies of finite measurable partitions, Probab. Inform. Theory II. Lect. Notes Math. Vol. 296, Springer-Verlag, Berlin-Heidelberg-New York, 1973, pp. 102–138. (1973) MR0379019
- 10.1017/S0950184300003244, Edinburgh Math. Notes 43 (1960), 7–8. (1960) MR0151748DOI10.1017/S0950184300003244
- 10.1007/BF01895986, Acta Math. Acad. Sci. Hungar. 22 (1971), 11–14. (1971) MR0293280DOI10.1007/BF01895986
- 10.1007/BF01902599, Acta Math. Acad. Sci. Hungar. 34 (1979), 105–116. (1979) MR0546725DOI10.1007/BF01902599
- Über die Erweiterung der auf einer Punktmenge additiven Funktionen, Publ. Math. 14 (1967), 239–245. (German) (1967) MR0240492
- Some functional equations connected with entropy, Bull. Calcutta Math. Soc. 80 (1988), 96–100. (1988) Zbl0654.39004MR0956797
- Quantification method of classification process. Concept of structural -entropy, Kybernetika 3 (1967), 30–35. (1967) MR0209067
- 10.1017/S0013091500003023, Proc. Edinb. Math. Soc., II. Sér. 23 (1980), 145–150. (1980) MR0597119DOI10.1017/S0013091500003023
- On a generalization of some measures in information theory, Glas. Mat., III. Sér. 9 (1974), 81–93. (1974) Zbl0287.39006MR0363671
- 10.1007/BF01902897, Metrika 28 (1981), 237–244. (1981) Zbl0469.94005MR0642931DOI10.1007/BF01902897
- Functional equations of sum form, Publ. Math. 32 (1985), 57–71. (1985) Zbl0588.39005MR0810591
- 10.1007/BF01895217, Acta Math. Acad. Sci. Hungar. 39 (1982), 73–82. (1982) MR0653676DOI10.1007/BF01895217
- 10.1007/BF01895147, Acta Math. Acad. Sci. Hungar. 37 (1981), 445–450. (1981) Zbl0472.39003MR0619897DOI10.1007/BF01895147
- 10.1007/BF01902848, Metrika 23 (1976), 31–40. (1976) Zbl0333.39006MR0415111DOI10.1007/BF01902848
- A mathematical theory of communication, Bell Syst. Tech. Jour. 27 (1948), 378–423, 623–656. (1948) Zbl1154.94303MR0026286
- Bounds on the minimal error probability on checking a finite or countable number of hypotheses, Probl. Inf. Transm. 4 (1968), 9–19. (1968) MR0267685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.