The Neumann problem for some degenerate elliptic equations

Albo Carlos Cavalheiro

Applications of Mathematics (2006)

  • Volume: 51, Issue: 6, page 619-628
  • ISSN: 0862-7940

Abstract

top
In the paper we study the equation L u = f , where L is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set Ω . We prove existence and uniqueness of solutions in the space H ( Ω ) for the Neumann problem.

How to cite

top

Cavalheiro, Albo Carlos. "The Neumann problem for some degenerate elliptic equations." Applications of Mathematics 51.6 (2006): 619-628. <http://eudml.org/doc/33271>.

@article{Cavalheiro2006,
abstract = {In the paper we study the equation $Lu=f$, where $L$ is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set $\{\Omega \}$. We prove existence and uniqueness of solutions in the space $H(\Omega )$ for the Neumann problem.},
author = {Cavalheiro, Albo Carlos},
journal = {Applications of Mathematics},
keywords = {Neumann problem; degenerate elliptic equations; Neumann problem; degenerate elliptic equations},
language = {eng},
number = {6},
pages = {619-628},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The Neumann problem for some degenerate elliptic equations},
url = {http://eudml.org/doc/33271},
volume = {51},
year = {2006},
}

TY - JOUR
AU - Cavalheiro, Albo Carlos
TI - The Neumann problem for some degenerate elliptic equations
JO - Applications of Mathematics
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 51
IS - 6
SP - 619
EP - 628
AB - In the paper we study the equation $Lu=f$, where $L$ is a degenerate elliptic operator, with Neumann boundary condition in a bounded open set ${\Omega }$. We prove existence and uniqueness of solutions in the space $H(\Omega )$ for the Neumann problem.
LA - eng
KW - Neumann problem; degenerate elliptic equations; Neumann problem; degenerate elliptic equations
UR - http://eudml.org/doc/33271
ER -

References

top
  1. 10.1080/03605308608820458, Commun. PDE 11 (1986), 1111–1134. (1986) MR0847996DOI10.1080/03605308608820458
  2. Existence and estimates for Green’s function for degenerate elliptic equations, Ann. Sc. Norm. Super. Pisa IV ser. 15, Fasc.  II (1988), 309–340. (1988) MR1007400
  3. Pointwise estimates for a class of strongly degenerate elliptic operators: A geometrical approch, Ann. Sc. Norm. Sup. Pisa C1 ser. 14 (1987), 527–568. (1987) MR0963489
  4. 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc. 165 (1972), 207–226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  5. Real-Variable Methods in Harmonic Analysis, Academic Press, Orlando, 1986. (1986) Zbl0621.42001MR0869816
  6. Function Spaces, Noordhoff International Publishing, Leyden, 1977. (1977) MR0482102
  7. Weighted Sobolev Spaces, John Wiley & Sons, New York, 1985. (1985) Zbl0579.35021MR0802206
  8. Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs, Clarendon Press, Oxford, 1993. (1993) MR1207810
  9. Weighted Norm Inequalities and Related Topics. North-Holland Mathematics Studies  116, North Holland, Amsterdam-New York-Oxford, 1985. (1985) MR0807149
  10. Nonlinear Potential Theory and Weighted Sobolev Spaces. Lectures Notes in Mathematics Vol.  1736, Springer-Verlag, Berlin, 2000. (2000) MR1774162
  11. 10.1016/0362-546X(94)90165-1, Nonlinear Anal., Theory Methods Appl. 22 (1994), 409–424. (1994) MR1266369DOI10.1016/0362-546X(94)90165-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.