Existence and estimates of Green's function for degenerate elliptic equations

S. Chanillo; R. L. Wheeden

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1988)

  • Volume: 15, Issue: 2, page 309-340
  • ISSN: 0391-173X

How to cite

top

Chanillo, S., and Wheeden, R. L.. "Existence and estimates of Green's function for degenerate elliptic equations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 15.2 (1988): 309-340. <http://eudml.org/doc/84032>.

@article{Chanillo1988,
author = {Chanillo, S., Wheeden, R. L.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {degenerate operators in divergence form; Green's function},
language = {eng},
number = {2},
pages = {309-340},
publisher = {Scuola normale superiore},
title = {Existence and estimates of Green's function for degenerate elliptic equations},
url = {http://eudml.org/doc/84032},
volume = {15},
year = {1988},
}

TY - JOUR
AU - Chanillo, S.
AU - Wheeden, R. L.
TI - Existence and estimates of Green's function for degenerate elliptic equations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1988
PB - Scuola normale superiore
VL - 15
IS - 2
SP - 309
EP - 340
LA - eng
KW - degenerate operators in divergence form; Green's function
UR - http://eudml.org/doc/84032
ER -

References

top
  1. [1] S. Chanillo - R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for the Peano maximal functions, Amer. J. Math.107 (1985), pp. 1191-1226. Zbl0575.42026MR805809
  2. [2] S. Chanillo - R.L. Wheeden, Harnack's inequality and mean-value inequalities for solutions of degenerate elliptic equations, Comm. P.D.E.11 (10) (1986), pp. 1111-1134. Zbl0634.35035MR847996
  3. [3] E.B. Fabes - C.E. Kenig - R.P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. P.D.E.7 (1982), pp. 77-116. Zbl0498.35042MR643158
  4. [4] E.B. Fabes - D. Jerison - C. Kenig, The Wiener test for degenerate elliptic equations, Ann. Inst. Fourier (Grenoble) 32 (1982), pp. 151-182. Zbl0488.35034MR688024
  5. [5] R. Gariepy - W.P. Ziemer, A regularity condition at the boundary for solutions of quasilinear elliptic equations, Arch. Rat. Mech. Analy.67 (1977-78), pp. 25-39. Zbl0389.35023MR492836
  6. [6] D. Gilbarg - N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edition, Springer-Verlag, 1983. Zbl0562.35001MR737190
  7. [7] M. Gruter - K.O. Widman, The Green function for uniformly elliptic equations, Manuscripta Math.37 (1982), pp. 303-342. Zbl0485.35031MR657523
  8. [8] D. Kinderlehrer - G. Stampacchia, An Introduction to Variational Inequalities and Their Applications, Academic Press, 1980, New York. Zbl0457.35001MR567696
  9. [9] W. Littman - G. Stampacchia - H.F. Weinberger, Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. III17 (1963), pp. 43-77. Zbl0116.30302MR161019
  10. [10] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc.165 (1972), pp. 207-226. Zbl0236.26016MR293384
  11. [11] N.S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. III, 27 (1973), pp. 275-308. Zbl0279.35025MR369884

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.