Stationary Schrödinger equations governing electronic states of quantum dots in the presence of spin-orbit splitting
Marta M. Betcke; Heinrich Voss
Applications of Mathematics (2007)
- Volume: 52, Issue: 3, page 267-284
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topBetcke, Marta M., and Voss, Heinrich. "Stationary Schrödinger equations governing electronic states of quantum dots in the presence of spin-orbit splitting." Applications of Mathematics 52.3 (2007): 267-284. <http://eudml.org/doc/33288>.
@article{Betcke2007,
abstract = {In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions which are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs heterojunction. Exploiting the minmax property we devise an efficient iterative projection method simultaneously handling the pair of nonlinear problems and thereby saving about 25 % of the computation time as compared to the Nonlinear Arnoldi method applied to each of the problems separately.},
author = {Betcke, Marta M., Voss, Heinrich},
journal = {Applications of Mathematics},
keywords = {quantum dot; nonlinear eigenvalue problem; minmax characterization; iterative projection method; electronic state; spin orbit interaction; quantum dot; nonlinear eigenvalue problem; minmax characterization; iterative projection method; Hamiltonian; nonlinear Arnoldi method},
language = {eng},
number = {3},
pages = {267-284},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Stationary Schrödinger equations governing electronic states of quantum dots in the presence of spin-orbit splitting},
url = {http://eudml.org/doc/33288},
volume = {52},
year = {2007},
}
TY - JOUR
AU - Betcke, Marta M.
AU - Voss, Heinrich
TI - Stationary Schrödinger equations governing electronic states of quantum dots in the presence of spin-orbit splitting
JO - Applications of Mathematics
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 3
SP - 267
EP - 284
AB - In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions which are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs heterojunction. Exploiting the minmax property we devise an efficient iterative projection method simultaneously handling the pair of nonlinear problems and thereby saving about 25 % of the computation time as compared to the Nonlinear Arnoldi method applied to each of the problems separately.
LA - eng
KW - quantum dot; nonlinear eigenvalue problem; minmax characterization; iterative projection method; electronic state; spin orbit interaction; quantum dot; nonlinear eigenvalue problem; minmax characterization; iterative projection method; Hamiltonian; nonlinear Arnoldi method
UR - http://eudml.org/doc/33288
ER -
References
top- Eigenvalue problems, In: Handbook of Numerical Analysis, Vol. II, P. G. Ciarlet, J.-L. Lions (eds.), North Holland, Amsterdam, 1991, pp. 641–787. (1991) MR1115240
- Wave Mechanics Applied to Semiconductor Heterostructures, Les editions de physique, Les Ulis Cedex, 1988. (1988)
- Iterative projection methods for symmetric nonlinear eigenvalue problems with applications, In preparation.
- 10.1016/j.future.2003.07.003, Future Generation Computer Systems 20 (2004), 363–372. (2004) MR2213179DOI10.1016/j.future.2003.07.003
- Physics of Optoelectronic Devices, John Wiley & Sons, New York, 1995. (1995)
- 10.1103/PhysRevB.50.8523, Phys. Rev. B 50 (1994), 8523–8533. (1994) DOI10.1103/PhysRevB.50.8523
- FEMLAB, Version 3.1, COMSOL, Inc., Burlington, 2004. (2004)
- The method, In: Semiconductors and Semimetals. Physics of III–V Compounds, Vol 1, R. K. Willardson, A. C. Beer (eds.), Academic Press, , 1966, pp. 75–100. (1966)
- 10.1140/epjb/e2002-00250-6, Eur. Phys. J. B 28 (2002), 475–481. (2002) DOI10.1140/epjb/e2002-00250-6
- Spin dependent boundary conditions and spin splitting in cylindrical quantum dots, In: Techn. Proc. of Internat. Conference on Modeling and Simulation of Microsystems, 2001, pp. 562–565. (2001)
- 10.1103/PhysRev.97.869, Phys. Rev. 97 (1954), 869–883. (1954) DOI10.1103/PhysRev.97.869
- 10.1137/0722055, SIAM J. Numer. Anal. 22 (1985), 914–923. (1985) Zbl0594.65026MR0799120DOI10.1137/0722055
- Hardy-Type Inequalities. Pitman Research Notes in Mathematics Vol. 219, Longman Scientific & Technical, Harlow, 1990. (1990) MR1069756
- Effect of the heterointerface on the spin splitting in the modulation doped InGaAs/InP quantum wells for , J. Appl. Phys. 83 (1998), 4324–4333. (1998)
- 10.1063/1.1614426, J. Appl. Phys. 94 (2003), 5891–5895. (2003) DOI10.1063/1.1614426
- 10.1002/1521-3951(200107)226:1<175::AID-PSSB175>3.0.CO;2-I, Phys. Stat. Sol. 226 (2001), 175–184. (2001) DOI10.1002/1521-3951(200107)226:1<175::AID-PSSB175>3.0.CO;2-I
- 10.1103/PhysRevB.63.165306, Phys. Rev. B 63 (2001), 165306-1–165306-6. (2001) DOI10.1103/PhysRevB.63.165306
- Initializing iterative projection methods for rational symmetric eigenproblems, In: Online Proceedings of the Dagstuhl Seminar Theoretical and Computational Aspects of Matrix Algorithms, Schloss Dagstuhl, 2003ftp://ftp.dagstuhl.de/pub/Proceedings/03/03421/03421.VoszHeinrich.Other.pdf, 2003.
- 10.1023/B:BITN.0000039424.56697.8b, BIT 44 (2004), 387–401. (2004) Zbl1066.65059MR2093512DOI10.1023/B:BITN.0000039424.56697.8b
- A rational eigenvalue problem governing relevant energy states of a quantum dots, J. Comput. Phys. 217 (2006), 824–833. (2006) MR2260626
- 10.1002/mma.1670040126, Math. Methods Appl. Sci. 4 (1982), 415–424. (1982) MR0669135DOI10.1002/mma.1670040126
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.