The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The global convergence of a direct method for determining turning (limit) points of a parameter-dependent mapping is analysed. It is assumed that the relevant extended system has a singular root for a special parameter value. The singular root is clasified as a (i.e., as a turning point). Then, the Theorz for Imperfect Bifurcation offers a particular scenario for the split of the singular root into a finite number of regular roots (turning points) due to a given parameter imperfection. The relationship...
The Recursive Projection Method is a technique for continuation of both the steady states and the dominant invariant subspaces. In this paper a modified version of the RPM called projected RPM is proposed. The modification underlines the stabilization effect. In order to improve the poor update of the unstable invariant subspace we have applied subspace iterations preconditioned by Cayley transform. A statement concerning the local convergence of the resulting method is proved. Results of numerical...
In this work we derive a pair of nonlinear eigenvalue problems corresponding to the one-band effective Hamiltonian accounting for the spin-orbit interaction governing the electronic states of a quantum dot. We show that the pair of nonlinear problems allows for the minmax characterization of its eigenvalues under certain conditions which are satisfied for our example of a cylindrical quantum dot and the common InAs/GaAs heterojunction. Exploiting the minmax property we devise an efficient iterative...
Currently displaying 1 –
18 of
18