The scalar Oseen operator in
Applications of Mathematics (2008)
- Volume: 53, Issue: 1, page 41-80
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topAmrouche, Chérif, and Bouzit, Hamid. "The scalar Oseen operator $-\Delta + {\partial }/{\partial x_1}$ in $\mathbb {R}^2$." Applications of Mathematics 53.1 (2008): 41-80. <http://eudml.org/doc/33310>.
@article{Amrouche2008,
abstract = {This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in $L^\{p\}$ theory.},
author = {Amrouche, Chérif, Bouzit, Hamid},
journal = {Applications of Mathematics},
keywords = {Oseen equation; weighted Sobolev space; anisotropic weight; Oseen equation; weighted Sobolev space; anisotropic weight},
language = {eng},
number = {1},
pages = {41-80},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The scalar Oseen operator $-\Delta + \{\partial \}/\{\partial x_1\}$ in $\mathbb \{R\}^2$},
url = {http://eudml.org/doc/33310},
volume = {53},
year = {2008},
}
TY - JOUR
AU - Amrouche, Chérif
AU - Bouzit, Hamid
TI - The scalar Oseen operator $-\Delta + {\partial }/{\partial x_1}$ in $\mathbb {R}^2$
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 1
SP - 41
EP - 80
AB - This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in $L^{p}$ theory.
LA - eng
KW - Oseen equation; weighted Sobolev space; anisotropic weight; Oseen equation; weighted Sobolev space; anisotropic weight
UR - http://eudml.org/doc/33310
ER -
References
top- Weighted Sobolev spaces for Laplace’s equation in , J. Math. Pures Appl., IX. Sér. 73 (1994), 579–606. (1994) MR1309165
- Weighted Sobolev spaces for a scalar model of the stationary Oseen equation in , J. Math. Fluids Mech (to appear). (to appear) MR2329264
- A variational approach in weighted Sobolev spaces to the operator in exterior domains of , Math. Z. 210 (1992), 449–464. (1992) MR1171183
- 10.1007/BF02571437, Math. Z. 211 (1992), 409–448. (1992) MR1190220DOI10.1007/BF02571437
- Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains, Proc. 3rd International Conference on the Navier-Stokes Equations: Theory and Numerical Methods, Oberwolfach, Germany, June 5–11, 1994, J. G. Heywood (ed.), World Scientific, Ser. Adv. Math. Appl. Sci. Vol. 47, Singapore, 1998, pp. 11–30. (1998) MR1643022
- 10.1007/BF00253485, Arch. Ration. Mech. Anal. 19 (1965), 363–406. (1965) Zbl0149.44606MR0182816DOI10.1007/BF00253485
- Estimates at infinity for stationary solutions of the Navier-Stokes equations, Bull. Math. Soc. Sci. Math. Phys. R. P. R. 51 (1960), 387–418. (1960) Zbl0106.39402MR0166495
- An introduction to the mathematical theory of the Navier-Stokes equations. Vol. I: Linearized steady problems, Springer Tracts in Natural Philosophy, Vol. 38, Springer, New York, 1994. (1994) MR1284205
- Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace, Rend. Sem. Mat. Univ. Padova 46 (1972), 227–272. (1972) Zbl0247.35041MR0310417
- 10.2969/jmsj/05310059, J. Math. Soc. Japan 53 (2001), 59–111. (2001) MR1800524DOI10.2969/jmsj/05310059
- Weighted Sobolev spaces, Wiley-Interscience, New York, 1985. (1985) Zbl0579.35021MR0802206
- -multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR 152 (1963), 808–811. (1963) Zbl0199.44401MR0154057
- Über die Stokessche Formel und über eine verwandte Aufgabe in der Hydrodynamik, Arkiv fór Mat. Astron. och Fys. 7 (1911), 1–36. (1911)
- Neuere Methoden und Ergebnisse in der Hydrodynamik, Akadem. Verlagsgesellschaft, Leipzig, 1927. (1927)
- 10.1512/iumj.1990.39.39004, Indiana Univ. Math. J. 39 (1990), 31–44. (1990) MR1052009DOI10.1512/iumj.1990.39.39004
- Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness, Academic Press, New York-San Francisco-London, 1975. (1975) MR0493420
- Singular Integrals and Differentiability Properties of Functions, University Press, Princeton, 1970. (1970) Zbl0207.13501MR0290095
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.