The scalar Oseen operator - Δ + / x 1 in 2

Chérif Amrouche; Hamid Bouzit

Applications of Mathematics (2008)

  • Volume: 53, Issue: 1, page 41-80
  • ISSN: 0862-7940

Abstract

top
This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in L p theory.

How to cite

top

Amrouche, Chérif, and Bouzit, Hamid. "The scalar Oseen operator $-\Delta + {\partial }/{\partial x_1}$ in $\mathbb {R}^2$." Applications of Mathematics 53.1 (2008): 41-80. <http://eudml.org/doc/33310>.

@article{Amrouche2008,
abstract = {This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in $L^\{p\}$ theory.},
author = {Amrouche, Chérif, Bouzit, Hamid},
journal = {Applications of Mathematics},
keywords = {Oseen equation; weighted Sobolev space; anisotropic weight; Oseen equation; weighted Sobolev space; anisotropic weight},
language = {eng},
number = {1},
pages = {41-80},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The scalar Oseen operator $-\Delta + \{\partial \}/\{\partial x_1\}$ in $\mathbb \{R\}^2$},
url = {http://eudml.org/doc/33310},
volume = {53},
year = {2008},
}

TY - JOUR
AU - Amrouche, Chérif
AU - Bouzit, Hamid
TI - The scalar Oseen operator $-\Delta + {\partial }/{\partial x_1}$ in $\mathbb {R}^2$
JO - Applications of Mathematics
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 53
IS - 1
SP - 41
EP - 80
AB - This paper solves the scalar Oseen equation, a linearized form of the Navier-Stokes equation. Because the fundamental solution has anisotropic properties, the problem is set in a Sobolev space with isotropic and anisotropic weights. We establish some existence results and regularities in $L^{p}$ theory.
LA - eng
KW - Oseen equation; weighted Sobolev space; anisotropic weight; Oseen equation; weighted Sobolev space; anisotropic weight
UR - http://eudml.org/doc/33310
ER -

References

top
  1. Weighted Sobolev spaces for Laplace’s equation in  n , J.  Math. Pures Appl., IX.  Sér. 73 (1994), 579–606. (1994) MR1309165
  2. Weighted Sobolev spaces for a scalar model of the stationary Oseen equation in  3 , J. Math. Fluids Mech (to appear). (to appear) MR2329264
  3. A variational approach in weighted Sobolev spaces to the operator - Δ + / x 1 in exterior domains of  3 , Math.  Z. 210 (1992), 449–464. (1992) MR1171183
  4. 10.1007/BF02571437, Math. Z. 211 (1992), 409–448. (1992) MR1190220DOI10.1007/BF02571437
  5. Weighted estimates for the Oseen equations and the Navier-Stokes equations in exterior domains, Proc. 3rd International Conference on the Navier-Stokes Equations: Theory and Numerical Methods, Oberwolfach, Germany, June 5–11, 1994, J. G. Heywood (ed.), World Scientific, Ser. Adv. Math. Appl. Sci. Vol. 47, Singapore, 1998, pp. 11–30. (1998) MR1643022
  6. 10.1007/BF00253485, Arch. Ration. Mech. Anal. 19 (1965), 363–406. (1965) Zbl0149.44606MR0182816DOI10.1007/BF00253485
  7. Estimates at infinity for stationary solutions of the Navier-Stokes equations, Bull. Math. Soc. Sci. Math. Phys. R.  P.  R. 51 (1960), 387–418. (1960) Zbl0106.39402MR0166495
  8. An introduction to the mathematical theory of the Navier-Stokes equations. Vol.  I: Linearized steady problems, Springer Tracts in Natural Philosophy, Vol. 38, Springer, New York, 1994. (1994) MR1284205
  9. Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace, Rend. Sem. Mat. Univ. Padova 46 (1972), 227–272. (1972) Zbl0247.35041MR0310417
  10. 10.2969/jmsj/05310059, J.  Math. Soc. Japan 53 (2001), 59–111. (2001) MR1800524DOI10.2969/jmsj/05310059
  11. Weighted Sobolev spaces, Wiley-Interscience, New York, 1985. (1985) Zbl0579.35021MR0802206
  12. ( L p , L q ) -multipliers of Fourier integrals, Dokl. Akad. Nauk SSSR 152 (1963), 808–811. (1963) Zbl0199.44401MR0154057
  13. Über die Stokessche Formel und über eine verwandte Aufgabe in der Hydrodynamik, Arkiv fór Mat. Astron. och Fys. 7 (1911), 1–36. (1911) 
  14. Neuere Methoden und Ergebnisse in der Hydrodynamik, Akadem. Verlagsgesellschaft, Leipzig, 1927. (1927) 
  15. 10.1512/iumj.1990.39.39004, Indiana Univ. Math. J. 39 (1990), 31–44. (1990) MR1052009DOI10.1512/iumj.1990.39.39004
  16. Methods of Modern Mathematical Physics. II.  Fourier Analysis, Self-adjointness, Academic Press, New York-San Francisco-London, 1975. (1975) MR0493420
  17. Singular Integrals and Differentiability Properties of Functions, University Press, Princeton, 1970. (1970) Zbl0207.13501MR0290095

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.