Almost disjoint families and “never” cardinal invariants
Charles Morgan; Samuel Gomes da Silva
Commentationes Mathematicae Universitatis Carolinae (2009)
- Volume: 50, Issue: 3, page 433-444
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topMorgan, Charles, and da Silva, Samuel Gomes. "Almost disjoint families and “never” cardinal invariants." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 433-444. <http://eudml.org/doc/33326>.
@article{Morgan2009,
abstract = {We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to $\omega _1$ under the effective weak diamond principle $\diamondsuit (\omega ,\omega ,<)$, answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families, Questions Answers Gen. Topology 25(2007), no. 1, 1–18, and give some information about the strength of this principle.},
author = {Morgan, Charles, da Silva, Samuel Gomes},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {almost disjoint families; parametrized weak diamond principles; property $(a)$; countable paracompactness; almost disjoint family; parametrized weak diamond principle; property (a); countable paracompactness},
language = {eng},
number = {3},
pages = {433-444},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Almost disjoint families and “never” cardinal invariants},
url = {http://eudml.org/doc/33326},
volume = {50},
year = {2009},
}
TY - JOUR
AU - Morgan, Charles
AU - da Silva, Samuel Gomes
TI - Almost disjoint families and “never” cardinal invariants
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 433
EP - 444
AB - We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to $\omega _1$ under the effective weak diamond principle $\diamondsuit (\omega ,\omega ,<)$, answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families, Questions Answers Gen. Topology 25(2007), no. 1, 1–18, and give some information about the strength of this principle.
LA - eng
KW - almost disjoint families; parametrized weak diamond principles; property $(a)$; countable paracompactness; almost disjoint family; parametrized weak diamond principle; property (a); countable paracompactness
UR - http://eudml.org/doc/33326
ER -
References
top- Balogh Z., Eisworth T., Gruenhage G., Pavlov O., Szeptycki P., 10.4064/fm181-3-1, Fund. Math. 181 (2004), no. 3, 189--213. Zbl1051.03034MR2099600DOI10.4064/fm181-3-1
- Blass A., Questions and answers --- a category arising in linear logic, complexity theory, and set theory, Advances in Linear Logic (Ithaca, NY, 1993), London Math. Soc. Lecture Note Ser. 222, Cambridge Univ. Press, Cambridge, 1995, 61--81. Zbl0823.03039MR1356008
- Blass A., Combinatorial Cardinal Characteristics of the Continuum, to appear as a chapter in the Handbook of Set Theory (eds. M. Foreman, M. Magidor, and A. Kanamori), 104pp. (www.math.lsa.umich.edu/ablass/hbk.pdf). MR2768685
- Brendle J., 10.4153/CMB-1999-002-2, Canad. Math. Bull. 42 (1999), no. 1, 13--24. Zbl0933.03059MR1695894DOI10.4153/CMB-1999-002-2
- Devlin K.J., Shelah S., 10.1007/BF02762012, Israel J. Math. 29 (1978), no. 2--3, 239--247. MR0469756DOI10.1007/BF02762012
- Fleissner W.G., Separation properties in Moore spaces, Fund. Math. 98 (1978), no. 3, 279--286. Zbl0376.54010MR0478111
- Ishiu T., The Weak Diamond, preprint, 3 pp. (www.users.muohio.edu/ishiut/research.html).
- Jech T., Prikry K., 10.1017/S0305004100061272, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 25--32. MR0727077DOI10.1017/S0305004100061272
- Matveev M.V., Some questions on property , Questions Answers Gen. Topology 15 (1997), no. 2, 103--111. Zbl1002.54016MR1472172
- Mildenberger H., Finding generic filters by playing games, preprint. (http://www.logic.univie.ac.at/heike/postings/reap14.pdf). MR2592047
- Moore J.T., Hrušák M., Džamonja M., 10.1090/S0002-9947-03-03446-9, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2281--2306. MR2048518DOI10.1090/S0002-9947-03-03446-9
- de Paiva V.C.V., 10.1007/BFb0018360, Category Theory and Computer Science (Manchester, 1989), Lecture Notes in Comput. Sci. 389 (1989), Springer, Berlin, 341-356. MR1031571DOI10.1007/BFb0018360
- de Paiva V.C.V., Dialectica and Chu constructions: cousins?, Theory and Applications of Categories, Vol. 17, No. 7, 2007, 127--152. Zbl1123.18004
- da Silva S.G., Property and dominating families, Comment. Math. Univ. Carolin. 46 (2005), no. 4, 667--684. Zbl1121.54014MR2259498
- da Silva S.G., On the presence of countable paracompactness, normality and property in spaces from almost disjoint families, Questions Answers Gen. Topology 25 (2007), no. 1, 1--18. MR2319472
- Szeptycki P.J., 10.1090/S0002-9939-02-06487-0, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3713--3717. Zbl0996.03032MR1920052DOI10.1090/S0002-9939-02-06487-0
- Szeptycki P.J., Vaughan J.E., Almost disjoint families and property , Fund. Math. 158 (1998), no. 3, 229--240. Zbl0933.54005MR1663330
- Vojtáš P., Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis, Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan (1993), 619--643. MR1234291
- Watson W.S., 10.1090/S0002-9947-1985-0792831-X, Trans. Amer. Math. Soc. 290 (1985), no. 2, 831--842. Zbl0583.54013MR0792831DOI10.1090/S0002-9947-1985-0792831-X
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.