Almost disjoint families and “never” cardinal invariants

Charles Morgan; Samuel Gomes da Silva

Commentationes Mathematicae Universitatis Carolinae (2009)

  • Volume: 50, Issue: 3, page 433-444
  • ISSN: 0010-2628

Abstract

top
We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to ω 1 under the effective weak diamond principle ( ω , ω , < ) , answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property ( a ) in spaces from almost disjoint families, Questions Answers Gen. Topology 25(2007), no. 1, 1–18, and give some information about the strength of this principle.

How to cite

top

Morgan, Charles, and da Silva, Samuel Gomes. "Almost disjoint families and “never” cardinal invariants." Commentationes Mathematicae Universitatis Carolinae 50.3 (2009): 433-444. <http://eudml.org/doc/33326>.

@article{Morgan2009,
abstract = {We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to $\omega _1$ under the effective weak diamond principle $\diamondsuit (\omega ,\omega ,<)$, answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families, Questions Answers Gen. Topology 25(2007), no. 1, 1–18, and give some information about the strength of this principle.},
author = {Morgan, Charles, da Silva, Samuel Gomes},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {almost disjoint families; parametrized weak diamond principles; property $(a)$; countable paracompactness; almost disjoint family; parametrized weak diamond principle; property (a); countable paracompactness},
language = {eng},
number = {3},
pages = {433-444},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Almost disjoint families and “never” cardinal invariants},
url = {http://eudml.org/doc/33326},
volume = {50},
year = {2009},
}

TY - JOUR
AU - Morgan, Charles
AU - da Silva, Samuel Gomes
TI - Almost disjoint families and “never” cardinal invariants
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2009
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 50
IS - 3
SP - 433
EP - 444
AB - We define two cardinal invariants of the continuum which arise naturally from combinatorially and topologically appealing properties of almost disjoint families of sets of the natural numbers. These are the never soft and never countably paracompact numbers. We show that these cardinals must both be equal to $\omega _1$ under the effective weak diamond principle $\diamondsuit (\omega ,\omega ,<)$, answering questions of da Silva S.G., On the presence of countable paracompactness, normality and property $(a)$ in spaces from almost disjoint families, Questions Answers Gen. Topology 25(2007), no. 1, 1–18, and give some information about the strength of this principle.
LA - eng
KW - almost disjoint families; parametrized weak diamond principles; property $(a)$; countable paracompactness; almost disjoint family; parametrized weak diamond principle; property (a); countable paracompactness
UR - http://eudml.org/doc/33326
ER -

References

top
  1. Balogh Z., Eisworth T., Gruenhage G., Pavlov O., Szeptycki P., 10.4064/fm181-3-1, Fund. Math. 181 (2004), no. 3, 189--213. Zbl1051.03034MR2099600DOI10.4064/fm181-3-1
  2. Blass A., Questions and answers --- a category arising in linear logic, complexity theory, and set theory, Advances in Linear Logic (Ithaca, NY, 1993), London Math. Soc. Lecture Note Ser. 222, Cambridge Univ. Press, Cambridge, 1995, 61--81. Zbl0823.03039MR1356008
  3. Blass A., Combinatorial Cardinal Characteristics of the Continuum, to appear as a chapter in the Handbook of Set Theory (eds. M. Foreman, M. Magidor, and A. Kanamori), 104pp. (www.math.lsa.umich.edu/ablass/hbk.pdf). MR2768685
  4. Brendle J., 10.4153/CMB-1999-002-2, Canad. Math. Bull. 42 (1999), no. 1, 13--24. Zbl0933.03059MR1695894DOI10.4153/CMB-1999-002-2
  5. Devlin K.J., Shelah S., 10.1007/BF02762012, Israel J. Math. 29 (1978), no. 2--3, 239--247. MR0469756DOI10.1007/BF02762012
  6. Fleissner W.G., Separation properties in Moore spaces, Fund. Math. 98 (1978), no. 3, 279--286. Zbl0376.54010MR0478111
  7. Ishiu T., The Weak Diamond, preprint, 3 pp. (www.users.muohio.edu/ishiut/research.html). 
  8. Jech T., Prikry K., 10.1017/S0305004100061272, Math. Proc. Cambridge Philos. Soc. 95 (1984), no. 1, 25--32. MR0727077DOI10.1017/S0305004100061272
  9. Matveev M.V., Some questions on property ( a ) , Questions Answers Gen. Topology 15 (1997), no. 2, 103--111. Zbl1002.54016MR1472172
  10. Mildenberger H., Finding generic filters by playing games, preprint. (http://www.logic.univie.ac.at/heike/postings/reap14.pdf). MR2592047
  11. Moore J.T., Hrušák M., Džamonja M., 10.1090/S0002-9947-03-03446-9, Trans. Amer. Math. Soc. 356 (2004), no. 6, 2281--2306. MR2048518DOI10.1090/S0002-9947-03-03446-9
  12. de Paiva V.C.V., 10.1007/BFb0018360, Category Theory and Computer Science (Manchester, 1989), Lecture Notes in Comput. Sci. 389 (1989), Springer, Berlin, 341-356. MR1031571DOI10.1007/BFb0018360
  13. de Paiva V.C.V., Dialectica and Chu constructions: cousins?, Theory and Applications of Categories, Vol. 17, No. 7, 2007, 127--152. Zbl1123.18004
  14. da Silva S.G., Property ( a ) and dominating families, Comment. Math. Univ. Carolin. 46 (2005), no. 4, 667--684. Zbl1121.54014MR2259498
  15. da Silva S.G., On the presence of countable paracompactness, normality and property ( a ) in spaces from almost disjoint families, Questions Answers Gen. Topology 25 (2007), no. 1, 1--18. MR2319472
  16. Szeptycki P.J., 10.1090/S0002-9939-02-06487-0, Proc. Amer. Math. Soc. 130 (2002), no. 12, 3713--3717. Zbl0996.03032MR1920052DOI10.1090/S0002-9939-02-06487-0
  17. Szeptycki P.J., Vaughan J.E., Almost disjoint families and property ( a ) , Fund. Math. 158 (1998), no. 3, 229--240. Zbl0933.54005MR1663330
  18. Vojtáš P., Generalized Galois-Tukey-connections between explicit relations on classical objects of real analysis, Set Theory of the Reals (Ramat Gan, 1991), Israel Math. Conf. Proc. 6, Bar-Ilan Univ., Ramat Gan (1993), 619--643. MR1234291
  19. Watson W.S., 10.1090/S0002-9947-1985-0792831-X, Trans. Amer. Math. Soc. 290 (1985), no. 2, 831--842. Zbl0583.54013MR0792831DOI10.1090/S0002-9947-1985-0792831-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.