Considering uncertainty and dependence in Boolean, quantum and fuzzy logics
Kybernetika (1998)
- Volume: 34, Issue: 1, page [121]-134
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topNavara, Mirko, and Pták, Pavel. "Considering uncertainty and dependence in Boolean, quantum and fuzzy logics." Kybernetika 34.1 (1998): [121]-134. <http://eudml.org/doc/33339>.
@article{Navara1998,
abstract = {A degree of probabilistic dependence is introduced in the classical logic using the Frank family of $t$-norms known from fuzzy logics. In the quantum logic a degree of quantum dependence is added corresponding to the level of noncompatibility. Further, in the case of the fuzzy logic with $P$-states, (resp. $T$-states) the consideration turned out to be fully analogous to (resp. considerably different from) the classical situation.},
author = {Navara, Mirko, Pták, Pavel},
journal = {Kybernetika},
keywords = {degree of probabilistic dependence; $t$-norm; fuzzy logic; degree of probabilistic dependence; t-norm; fuzzy logic},
language = {eng},
number = {1},
pages = {[121]-134},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Considering uncertainty and dependence in Boolean, quantum and fuzzy logics},
url = {http://eudml.org/doc/33339},
volume = {34},
year = {1998},
}
TY - JOUR
AU - Navara, Mirko
AU - Pták, Pavel
TI - Considering uncertainty and dependence in Boolean, quantum and fuzzy logics
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 1
SP - [121]
EP - 134
AB - A degree of probabilistic dependence is introduced in the classical logic using the Frank family of $t$-norms known from fuzzy logics. In the quantum logic a degree of quantum dependence is added corresponding to the level of noncompatibility. Further, in the case of the fuzzy logic with $P$-states, (resp. $T$-states) the consideration turned out to be fully analogous to (resp. considerably different from) the classical situation.
LA - eng
KW - degree of probabilistic dependence; $t$-norm; fuzzy logic; degree of probabilistic dependence; t-norm; fuzzy logic
UR - http://eudml.org/doc/33339
ER -
References
top- Beran L., Orthomodular Lattices, Algebraic Approach. Academia, Praha 1984 Zbl0677.06003MR0785005
- Butnariu D., Klement E. P., Triangular Norm–Based Measures and Games with Fuzzy Coalitions, Kluwer, Dordrecht 1993 Zbl0804.90145MR2867321
- Lucia P. de, Pták P., Quantum probability spaces that are nearly classical, Bull. Polish Acad. Sci. Math. 40 (1992), 163–173 (1992) Zbl0765.60001MR1401868
- Dubois D., 10.1016/0167-6377(86)90017-9, Oper. Res. Lett. 5 (1986), 255–260 (1986) Zbl0611.90013MR0874728DOI10.1016/0167-6377(86)90017-9
- Dvurečenskij A., Riečan B., 10.1016/0165-0114(91)90066-Y, Fuzzy Sets and Systems 39 (1991), 65–73 (1991) MR1089012DOI10.1016/0165-0114(91)90066-Y
- Frank M. J., 10.1007/BF02189866, Aequationes Math. 19 (1979), 194–226 (1979) Zbl0444.39003MR0556722DOI10.1007/BF02189866
- Kalmbach G., Orthomodular Lattices, Academic Press, London 1983 Zbl0554.06009MR0716496
- Kläy M. P., Foulis D. J., 10.1007/BF01889691, Found. Phys. 20 (1990), 777–799 (1990) MR1008686DOI10.1007/BF01889691
- Klement E. P., Mesiar R., Navara M., Extensions of Boolean functions to -tribes of fuzzy sets, BUSEFAL 63 (1995), 16–21 (1995)
- Klement E. P., Navara M., 10.1023/A:1022822719086, Czechoslovak Math. J. 47 (122) (1997), 689–700 (1997) Zbl0902.28015MR1479313DOI10.1023/A:1022822719086
- Majerník V., Pulmannová S., 10.1063/1.529638, J. Math. Phys. 33 (1992), 2173–2178 (1992) DOI10.1063/1.529638
- Mesiar R., 10.1006/jmaa.1993.1283, J. Math. Anal. Appl. 177 (1993), 633–640 (1993) Zbl0816.28014MR1231507DOI10.1006/jmaa.1993.1283
- Mesiar R., On the structure of -tribes, Tatra Mountains Math. Publ. 3 (1993), 167–172 (1993) MR1278531
- Mesiar R., 10.1007/BF00676273, J. Theoret. Physics 34 (1995), 1609–1614 (1995) MR1353705DOI10.1007/BF00676273
- Mesiar R., Navara M., 10.1006/jmaa.1996.0243, J. Math. Anal. Appl. 201 (1996), 91–102 (1996) MR1397888DOI10.1006/jmaa.1996.0243
- Mundici D., 10.1016/0022-1236(86)90015-7, J. Funct. Anal. 65 (1986), 15–63 (1986) Zbl0597.46059MR0819173DOI10.1016/0022-1236(86)90015-7
- Navara M., A characterization of triangular norm based tribes, Tatra Mountains Math. Publ. 3 (1993), 161–166 (1993) Zbl0799.28013MR1278530
- Navara M., Algebraic approach to fuzzy quantum spaces, Demonstratio Math. 27 (1994), 589–600 (1994) Zbl0830.03032MR1319404
- Navara M., On generating finite orthomodular sublattices, Tatra Mountains Math. Publ. 10 (1997), 109–117 (1997) Zbl0915.06004MR1469286
- Navara M., Pták P., 10.1016/0165-0114(93)90193-L, Fuzzy Sets and Systems 56 (1993), 123–126 (1993) Zbl0816.28011MR1223202DOI10.1016/0165-0114(93)90193-L
- Navara M., Pták P., Uncertainty and dependence in classical and quantum logic – the role of triangular norms, To appear Zbl0988.03096
- Piasecki K., 10.1016/0165-0114(85)90093-4, Fuzzy Sets and Systems 17 (1985), 271–284 (1985) Zbl0604.60005MR0819364DOI10.1016/0165-0114(85)90093-4
- Pták P., Pulmannová S., Orthomodular Structures as Quantum Logics, Kluwer Academic Publishers, Dordrecht – Boston – London 1991 MR1176314
- Pták P., Pulmannová S., A measure–theoretic characterization of Boolean algebras among orthomodular lattices, Comment. Math. Univ. Carolin. 35 (1994), 205–208 (1994) Zbl0805.06010MR1292596
- Pykacz J., 10.1007/BF00671785, Internat. J. Theoret. Phys. 31 (1992), 1765–1781 (1992) Zbl0789.03049MR1183522DOI10.1007/BF00671785
- Salvati S., A characterization of Boolean algebras, Ricerche Mat. 43 (1994), 357–363 (1994) Zbl0915.06005MR1324757
- Schweizer B., Sklar A., Probabilistic Metric Spaces, North–Holland, New York 1983 Zbl0546.60010MR0790314
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.