About the maximum information and maximum likelihood principles
Kybernetika (1998)
- Volume: 34, Issue: 4, page [485]-494
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topVajda, Igor, and Grim, Jiří. "About the maximum information and maximum likelihood principles." Kybernetika 34.4 (1998): [485]-494. <http://eudml.org/doc/33382>.
@article{Vajda1998,
abstract = {Neural networks with radial basis functions are considered, and the Shannon information in their output concerning input. The role of information- preserving input transformations is discussed when the network is specified by the maximum information principle and by the maximum likelihood principle. A transformation is found which simplifies the input structure in the sense that it minimizes the entropy in the class of all information-preserving transformations. Such transformation need not be unique - under some assumptions it may be any minimal sufficient statistics.},
author = {Vajda, Igor, Grim, Jiří},
journal = {Kybernetika},
keywords = {neural networks; radial basis functions; entropy minimization; neural networks; radial basis functions; entropy minimization},
language = {eng},
number = {4},
pages = {[485]-494},
publisher = {Institute of Information Theory and Automation AS CR},
title = {About the maximum information and maximum likelihood principles},
url = {http://eudml.org/doc/33382},
volume = {34},
year = {1998},
}
TY - JOUR
AU - Vajda, Igor
AU - Grim, Jiří
TI - About the maximum information and maximum likelihood principles
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 4
SP - [485]
EP - 494
AB - Neural networks with radial basis functions are considered, and the Shannon information in their output concerning input. The role of information- preserving input transformations is discussed when the network is specified by the maximum information principle and by the maximum likelihood principle. A transformation is found which simplifies the input structure in the sense that it minimizes the entropy in the class of all information-preserving transformations. Such transformation need not be unique - under some assumptions it may be any minimal sufficient statistics.
LA - eng
KW - neural networks; radial basis functions; entropy minimization; neural networks; radial basis functions; entropy minimization
UR - http://eudml.org/doc/33382
ER -
References
top- Atick J. J., Redlich A. N., 10.1162/neco.1990.2.3.308, Neural Computation 2 (1990), 308–320 (1990) DOI10.1162/neco.1990.2.3.308
- Attneave F., 10.1037/h0054663, Psychological Review 61 (1954), 183–193 (1954) DOI10.1037/h0054663
- Becker S., Hinton G. E., 10.1038/355161a0, Nature (London) 355 (1992), 161–163 (1992) DOI10.1038/355161a0
- Bromhead D. S., Lowe D., Multivariate functional interpolation and adaptive networks, Complex Systems 2 (1988), 321–355 (1988) MR0955557
- Casdagli M., Nonlinear prediction of chaotic time–series, Physica 35D (1989), 335–356 (1989) Zbl0671.62099MR1004201
- Cover T. M., Thomas J. B., Elements of Information Theory, Wiley, New York 1991 Zbl1140.94001MR1122806
- Dempster A. P., Laird N. M., Rubin D. B., Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Statist. Soc. Ser. B 39 (1977), 1–38 (1977) Zbl0364.62022MR0501537
- Devroye L., Győrfi L., Nonparametric Density Estimation: The View, John Wiley, New York 1985 MR0780746
- Devroye L., Győrfi L., Lugosi G., A Probabilistic Theory of Pattern Recognition, Springer, New York 1996 MR1383093
- Haykin S., Neural Networks: A Comprehensive Foundation, MacMillan, New York 1994 Zbl0934.68076
- Hertz J., Krogh A., Palmer R. G., Introduction to the Theory of Neural Computation, Addison–Wesley, New York, Menlo Park CA, Amsterdam 1991 MR1096298
- Jacobs R. A., Jordan M. I., A competitive modular connectionist architecture, In: Advances in Neural Information Processing Systems (R. P. Lippmann, J. E. Moody and D. J. Touretzky, eds.), Morgan Kaufman, San Mateo CA 1991, Vol. 3. pp. 767–773 (1991)
- Kay J., Feature discovery under contextual supervision using mutual information, In: International Joint Conference on Neural Networks, Baltimore MD 1992, Vol. 4, pp. 79–84 (1992)
- Liese F., Vajda I., Convex Statistical Distances, Teubner Verlag, Leipzig 1987 Zbl0656.62004MR0926905
- Linsker R., 10.1109/2.36, Computer 21 (1988), 105–117 (1988) DOI10.1109/2.36
- Linsker R., 10.1146/annurev.ne.13.030190.001353, Annual Review of Neuroscience 13 (1990), 257–281 (1990) DOI10.1146/annurev.ne.13.030190.001353
- Lowe D., Adaptive radial basis function nonlinearities, and the problem of generalization, In: First IEE International Conference on Artificial Neural Networks, 1989, pp. 95–99 (1989)
- Moody J., Darken C., 10.1162/neco.1989.1.2.281, Neural Computation 1 (1989), 281–294 (1989) DOI10.1162/neco.1989.1.2.281
- Palm H. CH., A new method for generating statistical classifiers assuming linear mixtures of Gaussiian densities, In: Proceedings of the 12th IAPR Int. Conference on Pattern Recognition, IEEE Computer Society Press Jerusalem 1994, Vol. II., pp. 483–486 (1994)
- Plumbley M. D., A Hebbian/anti–Hebbian network which optimizes information capacity by orthonormalizing the principle subspace, In: IEE Artificial Neural Networks Conference, ANN-93, Brighton 1992, pp. 86–90 (1992)
- Plumbley M. D., Fallside F., An information–theoretic approach to unsupervised connectionist models, In: Proceedings of the 1988 Connectionist Models Summer School, (D. Touretzky, G. Hinton and T. Sejnowski, eds.), Morgan Kaufmann, San Mateo 1988, pp. 239–245 (1988)
- Poggio T., Girosi F., 10.1126/science.247.4945.978, Science 247 (1990), 978–982 (1990) MR1038271DOI10.1126/science.247.4945.978
- Rissanen J., Stochastic Complexity in Statistical Inquiry, World Scientific, New Jersey 1989 Zbl0800.68508MR1082556
- Specht D. F., Probabilistic neural networks for classification, mapping or associative memory, In: Proc. of the IEEE Int. Conference on Neural Networks, 1988, Vol. I., pp. 525–532 (1988)
- Shannon C. E., 10.1002/j.1538-7305.1948.tb01338.x, Bell System Technical Journal 27 (1948), 379–423, 623–656 (1948) Zbl1154.94303MR0026286DOI10.1002/j.1538-7305.1948.tb01338.x
- Streit L. R., Luginbuhl T. E., 10.1109/72.317728, IEEE Trans. Neural Networks 5 (1994), 5, 764–783 (1994) DOI10.1109/72.317728
- Vajda I., Grim J., Bayesian optimality of decisions is achievable by RBF neural networks, IEEE Trans. Neural Networks, submitted
- Ukrainec A., Haykin S., 10.1016/0893-6080(95)00062-3, Neural Networks 9 (1996), 141–168 (1996) DOI10.1016/0893-6080(95)00062-3
- Uttley A. M., The transmission of information and the effect of local feedback in theoretical and neural networks, Brain Research 102 (1966), 23–35 (1966)
- Watanabe S., Fukumizu K., 10.1109/72.377974, IEEE Trans. Neural Networks 6 (1995), 3, 691–702 (1995) DOI10.1109/72.377974
- Xu L., Jordan M. I., EM learning on a generalized finite mixture model for combining multiple classifiers, In: World Congress on Neural Networks, 1993, Vol. 4, pp. 227–230 (1993)
- Xu L., Krzyżak A., Oja E., 10.1109/72.238318, IEEE Trans. Neural Networks 4 (1993), 636–649 (1993) DOI10.1109/72.238318
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.