Neuromorphic features of probabilistic neural networks
Kybernetika (2007)
- Volume: 43, Issue: 5, page 697-712
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Bialasiewicz J., Statistical data reduction via construction of sample space partitions, Kybernetika 6 (1970), 6, 371–379 (1970) Zbl0218.94005MR0283910
- Dempster A. P., Laird N. M., Rubin D. B., Maximum-likelihood from incomplete data via the EM algorithm, J. Royal Statist. Soc. B 39 (1977), 1–38 (1977) Zbl0364.62022MR0501537
- Grim J., On numerical evaluation of maximum-likelihood estimates for finite mixtures of distributions, Kybernetika 18 (1982), 3, 173–190 (1982) Zbl0489.62028MR0680154
- Grim J., Design and optimization of multilevel homogeneous structures for multivariate pattern recognition, In: Fourth FORMATOR Symposium 1982, Academia, Prague 1982, pp. 233–240 (1982) MR0726960
- Grim J., Multivariate statistical pattern recognition with non-reduced dimensionality, Kybernetika 22 (1986), 6, 142–157 (1986)
- Grim J., Maximum-likelihood design of layered neural networks, In: Proc. Internat. Conference Pattern Recognition. IEEE Computer Society Press, Los Alamitos 1996, pp. 85–89 (1996)
- Grim J., Design of multilayer neural networks by information preserving transforms, In: Third European Congress on Systems Science (E. Pessa, M. P. Penna, and A. Montesanto, eds.). Edizioni Kappa, Roma 1996, pp. 977–982 (1996)
- Grim J., Information approach to structural optimization of probabilistic neural networks, In: Fourth European Congress on Systems Science (L. Ferrer and A. Caselles, eds.). SESGE, Valencia 1999, pp. 527–539 (1999)
- Grim J., Discretization of probabilistic neural networks with bounded information loss, In: Computer–Intensive Methods in Control and Data Processing. (Preprints of the 3rd European IEEE Workshop CMP’98, Prague 1998, J. Rojicek et al., eds.), ÚTIA AV ČR, Prague 1998, pp. 205–210 (1998)
- Grim J., A sequential modification of EM algorithm, In: Proc. Classification in the Information Age (W. Gaul and H. Locarek-Junge, eds., Studies in Classification, Data Analysis, and Knowledge Organization), Springer, Berlin 1999, pp. 163–170 (1999)
- J. J. Grim, Self-organizing maps and probabilistic neural networks, Neural Network World 10 (2000), 3, 407–415
- Grim J., Probabilistic Neural Networks (in Czech), In: Umělá inteligence IV. (V. Mařík, O. Štěpánková, and J. Lažanský, eds.), Academia, Praha 2003, pp. 276–312
- Grim J., Just, P., Pudil P., Strictly modular probabilistic neural networks for pattern recognition, Neural Network World 13 (2003), 6, 599–615
- Grim J., Kittler J., Pudil, P., Somol P., Combining multiple classifiers in probabilistic neural networks, In: Multiple Classifier Systems (Lecture Notes in Computer Science 1857, J. Kittler and F. Roli, eds.). Springer, Berlin 2000, pp. 157–166
- Grim J., Kittler J., Pudil, P., Somol P., Information analysis of multiple classifier fusion, In: Multiple Classifier Systems 2001 (Lecture Notes in Computer Science 2096, J. Kittler and F. Roli, eds.). Springer, Berlin – New York 2001, pp. 168–177 Zbl0987.68898MR2043268
- Grim J., Kittler J., Pudil, P., Somol P., Multiple classifier fusion in probabilistic neural networks, Pattern Analysis & Applications 5 (2002), 7, 221–233 Zbl1021.68079MR1930448
- Grim J., Pudil, P., Somol P., Recognition of handwritten numerals by structural probabilistic neural networks, In: Proc. Second ICSC Symposium on Neural Computation (H. Bothe and R. Rojas, eds.). ICSC, Wetaskiwin 2000, pp. 528–534
- Grim J., Pudil, P., Somol P., Boosting in probabilistic neural networks, In: Proc. 16th International Conference on Pattern Recognition (R. Kasturi, D. Laurendeau and C. Suen, eds.). IEEE Computer Society, Los Alamitos 2002, pp. 136–139
- Grim J., Somol P., Pudil, P., Just P., Probabilistic neural network playing a simple game, In: Artificial Neural Networks in Pattern Recognition (S. Marinai and M. Gori, eds.). University of Florence, Florence 2003, pp. 132–138
- Grim J., Somol, P., Pudil P., Probabilistic neural network playing and learning Tic-Tac-Toe, Pattern Recognition Letters, Special Issue 26 (2005), 12, 1866–1873
- Haykin S., Neural Networks: A Comprehensive Foundation, Morgan Kaufman, San Mateo 1993 Zbl0934.68076
- McLachlan G. J., Peel D., Finite Mixture Models, Wiley, New York – Toronto 2000 Zbl0963.62061MR1789474
- Perez A., Information, -sufficiency and data reduction problems, Kybernetika 1 (1965), 4, 297–323 (1965) MR0205410
- Perez A., -admissible simplification of the dependence structure of a set of random variables, Kybernetika 13 (1977), 6, 439–449 (1977) MR0472224
- Schlesinger M. I., Relation between learning and self-learning in pattern recognition (in Russian), Kibernetika (1968), 6, 81–88 (1968)
- Specht D. F., Probabilistic neural networks for classification, mapping or associative memory, In: Proc. IEEE Internat. Conference on Neural Networks 1988, Vol. I, pp. 525–532 (1988)
- Streit L. R., Luginbuhl T. E., Maximum-likelihood training of probabilistic neural networks, IEEE Trans. Neural Networks 5 (1994), 764–783 (1994)
- Vajda I., Grim J., About the maximum information and maximum likelihood principles in neural networks, Kybernetika 34 (1998), 4, 485–494 (1998) MR0359208
- Watanabe S., Fukumizu K., Probabilistic design of layered neural networks based on their unified framework, IEEE Trans. Neural Networks 6 (1995), 3, 691–702 (1995)
- Xu L., Jordan M. I., On convergence properties of the EM algorithm for Gaussian mixtures, Neural Computation 8 (1996), 129–151 (1996)