A spectral characterization of the behavior of discrete time AR–representations over a finite time interval

E. N. Antoniou; Antonis I. G. Vardulakis; Nikolas P. Karampetakis

Kybernetika (1998)

  • Volume: 34, Issue: 5, page [555]-564
  • ISSN: 0023-5954

Abstract

top
In this paper we investigate the behavior of the discrete time AR (Auto Regressive) representations over a finite time interval, in terms of the finite and infinite spectral structure of the polynomial matrix involved in the AR-equation. A boundary mapping equation and a closed formula for the determination of the solution, in terms of the boundary conditions, are also gived.

How to cite

top

Antoniou, E. N., Vardulakis, Antonis I. G., and Karampetakis, Nikolas P.. "A spectral characterization of the behavior of discrete time AR–representations over a finite time interval." Kybernetika 34.5 (1998): [555]-564. <http://eudml.org/doc/33388>.

@article{Antoniou1998,
abstract = {In this paper we investigate the behavior of the discrete time AR (Auto Regressive) representations over a finite time interval, in terms of the finite and infinite spectral structure of the polynomial matrix involved in the AR-equation. A boundary mapping equation and a closed formula for the determination of the solution, in terms of the boundary conditions, are also gived.},
author = {Antoniou, E. N., Vardulakis, Antonis I. G., Karampetakis, Nikolas P.},
journal = {Kybernetika},
keywords = {discrete time auto regressive (AR) model; boundary conditions; finite and infinite spectral structure of the polynomial matrix; discrete time auto regressive (AR) model; boundary conditions; finite and infinite spectral structure of the polynomial matrix},
language = {eng},
number = {5},
pages = {[555]-564},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A spectral characterization of the behavior of discrete time AR–representations over a finite time interval},
url = {http://eudml.org/doc/33388},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Antoniou, E. N.
AU - Vardulakis, Antonis I. G.
AU - Karampetakis, Nikolas P.
TI - A spectral characterization of the behavior of discrete time AR–representations over a finite time interval
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 5
SP - [555]
EP - 564
AB - In this paper we investigate the behavior of the discrete time AR (Auto Regressive) representations over a finite time interval, in terms of the finite and infinite spectral structure of the polynomial matrix involved in the AR-equation. A boundary mapping equation and a closed formula for the determination of the solution, in terms of the boundary conditions, are also gived.
LA - eng
KW - discrete time auto regressive (AR) model; boundary conditions; finite and infinite spectral structure of the polynomial matrix; discrete time auto regressive (AR) model; boundary conditions; finite and infinite spectral structure of the polynomial matrix
UR - http://eudml.org/doc/33388
ER -

References

top
  1. Luenberger D. G., 10.1109/TAC.1977.1101502, IEEE Trans. Automat. Control 22 (1977), 3, 312–321 (1977) Zbl0354.93007MR0479482DOI10.1109/TAC.1977.1101502
  2. Luenberger D. G., 10.1109/9.16418, IEEE Trans. Automat. Control 34 (1989), 3, 287–292 (1989) Zbl0674.93043MR0980358DOI10.1109/9.16418
  3. Lewis F. L., 10.1109/TAC.1984.1103467, IEEE Trans. Automat. Control 29 (1984), 2, 167–170 (1984) Zbl0534.93013MR0736914DOI10.1109/TAC.1984.1103467
  4. Lewis F. L., Mertzios B. G., 10.1109/9.52316, IEEE Trans. Automat. Control 35 (1990), 4, 506–511 (1990) Zbl0705.93058MR1048009DOI10.1109/9.52316
  5. Lewis F. L., A survey of linear singular systems, Circuits Systems Signal Process. 5 (1986), 1, 3–36 (1986) Zbl0613.93029MR0893725
  6. Nikoukhah R., Willsky A., Levy B. C., 10.1080/00207178708934005, Internat. J. Control 46 (1987), 1715–1737 (1987) Zbl0636.93055MR0917179DOI10.1080/00207178708934005
  7. Gantmacher F. R., Matrix Theory, Chelsea, New York 1971 
  8. Gohberg I., Lancaster P., Rodman L., Matrix Polynomials, Academic Press, New York 1982 Zbl1170.15300MR0662418
  9. Gohberg I., Kaashoek M. A., Lerer L., Rodman L., 10.1512/iumj.1981.30.30027, I. Spectral method. Indiana J. Math. 30 (1981), 321–356 (1981) Zbl0449.15015MR0611224DOI10.1512/iumj.1981.30.30027
  10. Gohberg I., Kaashoek M. A., Lerer L., Rodman L., 10.1080/03081088208817483, II. Van der Monde and resultant matrices. Linear and Multilinear Algebra 12 (1982), 159–203 (1982) Zbl0496.15014MR0678825DOI10.1080/03081088208817483
  11. Vardulakis A. I. G., Linear Multivariable Control – Algebraic Analysis and Synthesis Methods, Wiley, New York 1991 Zbl0751.93002MR1104222
  12. Willems J. C., 10.1109/9.73561, IEEE Trans. Automat. Control 36 (1991), 3, 259–294 (1991) Zbl0737.93004MR1092818DOI10.1109/9.73561

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.