A reduction principle for global stabilization of nonlinear systems

Rachid Outbib; Gauthier Sallet

Kybernetika (1998)

  • Volume: 34, Issue: 5, page [595]-607
  • ISSN: 0023-5954

Abstract

top
The goal of this paper is to propose new sufficient conditions for dynamic stabilization of nonlinear systems. More precisely, we present a reduction principle for the stabilization of systems that are obtained by adding integrators. This represents a generalization of the well-known lemma on integrators (see for instance [BYIS] or [Tsi1]).

How to cite

top

Outbib, Rachid, and Sallet, Gauthier. "A reduction principle for global stabilization of nonlinear systems." Kybernetika 34.5 (1998): [595]-607. <http://eudml.org/doc/33391>.

@article{Outbib1998,
abstract = {The goal of this paper is to propose new sufficient conditions for dynamic stabilization of nonlinear systems. More precisely, we present a reduction principle for the stabilization of systems that are obtained by adding integrators. This represents a generalization of the well-known lemma on integrators (see for instance [BYIS] or [Tsi1]).},
author = {Outbib, Rachid, Sallet, Gauthier},
journal = {Kybernetika},
keywords = {dynamic stabilization; nonlinear system; feedback stabilization; dynamic stabilization; nonlinear system; feedback stabilization},
language = {eng},
number = {5},
pages = {[595]-607},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A reduction principle for global stabilization of nonlinear systems},
url = {http://eudml.org/doc/33391},
volume = {34},
year = {1998},
}

TY - JOUR
AU - Outbib, Rachid
AU - Sallet, Gauthier
TI - A reduction principle for global stabilization of nonlinear systems
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 5
SP - [595]
EP - 607
AB - The goal of this paper is to propose new sufficient conditions for dynamic stabilization of nonlinear systems. More precisely, we present a reduction principle for the stabilization of systems that are obtained by adding integrators. This represents a generalization of the well-known lemma on integrators (see for instance [BYIS] or [Tsi1]).
LA - eng
KW - dynamic stabilization; nonlinear system; feedback stabilization; dynamic stabilization; nonlinear system; feedback stabilization
UR - http://eudml.org/doc/33391
ER -

References

top
  1. Aeyels D., 10.1016/0167-6911(85)90024-6, Systems Control Lett. 5 (1985), 289–29 (1985) MR0791542DOI10.1016/0167-6911(85)90024-6
  2. Arstein Z., Stabilization with relaxed controls, Nonlinear Anal. Theory Method Appl. 11 (1983), 1163–1173 (1983) MR0721403
  3. Byrnes C., Isidori A., 10.1016/0167-6911(89)90080-7, Systems Control Lett. 12 (1989), 437–442 (1989) Zbl0684.93059MR1005310DOI10.1016/0167-6911(89)90080-7
  4. Coron J. M., Praly L., 10.1016/0167-6911(91)90034-C, Systems Control Lett. 17 (1991), 84–104 (1991) Zbl0747.93072MR1120754DOI10.1016/0167-6911(91)90034-C
  5. Dayawansa W. P., Martin C. F., 10.1016/0167-6911(89)90051-0, Systems Control Lett. 12 (1989), 205–211 (1989) Zbl0673.93064MR0993943DOI10.1016/0167-6911(89)90051-0
  6. Dayawansa W. P., Martin C. F., Knowles G., 10.1137/0328070, SIAM J. Control Optim. 28 (1990), 1321–1349 (1990) Zbl0731.93076MR1075206DOI10.1137/0328070
  7. Hermes H., 10.1016/0167-6911(91)90083-Q, Systems Control Lett. 17 (1991), 437–443 (1991) Zbl0749.93072MR1138943DOI10.1016/0167-6911(91)90083-Q
  8. Hu X., 10.1016/0167-6911(94)90011-6, Systems Control Lett. 22 (1994), 177–185 (1994) MR1263941DOI10.1016/0167-6911(94)90011-6
  9. Iggidr A., Sallet G., Nonlinear stabilization by adding integrators, Kybernetika 30 (1994), 5, 499–506 (1994) Zbl0830.93065MR1314345
  10. Koditschek D. E., Adaptative techniques for mechanical systems, In: 5th Yale Workshop on Adaptative Systems, 1987, pp. 259-265 (1987) 
  11. Kokotovic P. V., Sussmann H. J., 10.1016/0167-6911(89)90029-7, Systems Control Lett. 13 (1989), 125–133 (1989) Zbl0684.93066MR1014238DOI10.1016/0167-6911(89)90029-7
  12. Lasalle J. P., Lefschetz S., Stability by Lyapunov Method with Applications, Academic Press, New York 1961 MR0132876
  13. Outbib R., Sallet G., 10.1016/0167-6911(92)90013-I, Systems Control Lett. 18 (1991), 93–98 (1991) MR1149353DOI10.1016/0167-6911(92)90013-I
  14. Sontag E. D., 10.1016/0167-6911(89)90028-5, Systems Control Lett. 13 (1989), 117–123 (1989) MR1014237DOI10.1016/0167-6911(89)90028-5
  15. Sontag E. D., Sussmann H. J., 10.1016/0167-6911(89)90052-2, Systems Control Lett. 12 (1989), 213–217 (1989) MR0993944DOI10.1016/0167-6911(89)90052-2
  16. Tsinias J., 10.1007/BF02551276, Math. Control Signals Systems 18 (1989), 343–357 (1989) Zbl0688.93048MR1015672DOI10.1007/BF02551276
  17. Tsinias J., 10.1016/0167-6911(92)90046-U, Systems Control Lett. 18 (1992), 429–434 (1992) Zbl0763.93076MR1169288DOI10.1016/0167-6911(92)90046-U

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.