Numerical studies of parameter estimation techniques for nonlinear evolution equations
Azmy S. Ackleh; Robert R. Ferdinand; Simeon Reich
Kybernetika (1998)
- Volume: 34, Issue: 6, page [693]-712
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topAckleh, Azmy S., Ferdinand, Robert R., and Reich, Simeon. "Numerical studies of parameter estimation techniques for nonlinear evolution equations." Kybernetika 34.6 (1998): [693]-712. <http://eudml.org/doc/33399>.
@article{Ackleh1998,
abstract = {We briefly discuss an abstract approximation framework and a convergence theory of parameter estimation for a general class of nonautonomous nonlinear evolution equations. A detailed discussion of the above theory has been given earlier by the authors in another paper. The application of this theory together with numerical results indicating the feasibility of this general least squares approach are presented in the context of quasilinear reaction diffusion equations.},
author = {Ackleh, Azmy S., Ferdinand, Robert R., Reich, Simeon},
journal = {Kybernetika},
keywords = {nonlinear evolution equation; parameter estimation; nonlinear evolution equation; parameter estimation},
language = {eng},
number = {6},
pages = {[693]-712},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Numerical studies of parameter estimation techniques for nonlinear evolution equations},
url = {http://eudml.org/doc/33399},
volume = {34},
year = {1998},
}
TY - JOUR
AU - Ackleh, Azmy S.
AU - Ferdinand, Robert R.
AU - Reich, Simeon
TI - Numerical studies of parameter estimation techniques for nonlinear evolution equations
JO - Kybernetika
PY - 1998
PB - Institute of Information Theory and Automation AS CR
VL - 34
IS - 6
SP - [693]
EP - 712
AB - We briefly discuss an abstract approximation framework and a convergence theory of parameter estimation for a general class of nonautonomous nonlinear evolution equations. A detailed discussion of the above theory has been given earlier by the authors in another paper. The application of this theory together with numerical results indicating the feasibility of this general least squares approach are presented in the context of quasilinear reaction diffusion equations.
LA - eng
KW - nonlinear evolution equation; parameter estimation; nonlinear evolution equation; parameter estimation
UR - http://eudml.org/doc/33399
ER -
References
top- Ackleh A. S., Fitzpatrick B. G., 10.1006/jmaa.1996.0391, J. Math. Anal. Appl. 203 (1996), 464–480 (1996) Zbl0869.35047MR1410934DOI10.1006/jmaa.1996.0391
- Ackleh A. S., Fitzpatrick B. G., Estimation of discontinuous parameters in general parabolic systems, Kybernetika 32 (1996), 543–556 (1996) MR1438104
- Ackleh A. S., Reich S., 10.1080/01630569808816867, Numer. Funct. Anal. Optim. 19 (1998), 933–947 (1998) Zbl0922.35185MR1656403DOI10.1080/01630569808816867
- Banks H. T., Kunisch K., Estimation Techniques for Distributed Parameter Systems, Birkhäuser, Boston – Basel 1989 Zbl0695.93020MR1045629
- Banks H. T., Lo C. K., Reich S., Rosen I. G., Numerical studies of identification in nonlinear distributed parameter systems, Internat. Ser. Numer. Math. 91 (1989), 1–20 (1989) Zbl0692.93019MR1033048
- Banks H. T., Reich S., Rosen I. G., 10.1137/0328033, SIAM J. Control Optim. 28 (1990), 552–569 (1990) Zbl0722.47058MR1047423DOI10.1137/0328033
- Banks H. T., Reich S., Rosen I. G., Estimation of nonlinear damping in second order distributed parameter systems, Control Theory and Advanced Technology 6 (1990), 395–415 (1990) MR1080016
- Banks H. T., Reich S., Rosen I. G., 10.1007/BF01447744, Appl. Math. Optim. 24 (1991), 233–256 (1991) Zbl0739.65098MR1123788DOI10.1007/BF01447744
- Barbu V., Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden 1976 Zbl0328.47035MR0390843
- Bear J., Dynamics of Fluids in Porous Media, Elsevier, New York 1972 Zbl1191.76002
- Canuto C., Quateroni A., 10.1090/S0025-5718-1982-0637287-3, Math. Comp. 38 (1982), 67–86 (1982) MR0637287DOI10.1090/S0025-5718-1982-0637287-3
- Fitzpatrick B. G., 10.1080/01630569508816650, Numer. Funct. Anal. Optim. 16 (1995), 847–866 (1995) Zbl0839.76081MR1355277DOI10.1080/01630569508816650
- Freeze R. A., Cherry J., Groundwater, Prentice–Hall, Englewood Cliffs, N. J. 1979
- Johnson C., Numerical Solution of Partial Differential Equations by The Finite Element Method, Cambridge Univ. Press, Cambridge 1987 Zbl0628.65098MR0925005
- Kluge R., Langmach H., On some Problems of Determination of Functional Parameters in Partial Differential Equations, In: Distributed Parameter Systems: Modeling and Identification (Lecture Notes in Control and Information Sciences 1), Springer–Verlag, Berlin 1978, pp. 298–309 (1978) MR0513638
- Pao C. V., Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York 1992 Zbl0777.35001MR1212084
- Schultz M. H., Spline Analysis, Prentice–Hall, Englewood Cliffs, N. J. 1973 Zbl0333.41009MR0362832
- Swartz B. K., Varga R. S., 10.1016/0021-9045(72)90079-2, J. Approx. Theory 6 (1972), 6–49 (1972) Zbl0242.41008MR0367514DOI10.1016/0021-9045(72)90079-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.