Optimal control of nonlinear delay systems with implicit derivative and quadratic performance
Krishnan Balachandran; N. Rajagopal
Kybernetika (1999)
- Volume: 35, Issue: 2, page [225]-233
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBalachandran, Krishnan, and Rajagopal, N.. "Optimal control of nonlinear delay systems with implicit derivative and quadratic performance." Kybernetika 35.2 (1999): [225]-233. <http://eudml.org/doc/33424>.
@article{Balachandran1999,
abstract = {The existence of optimal control for nonlinear delay systems having an implicit derivative with quadratic performance criteria is proved. The results are established by an iterative technique and using the Darbo fixed point theorem.},
author = {Balachandran, Krishnan, Rajagopal, N.},
journal = {Kybernetika},
keywords = {optimal control; nonlinear delay system; Darboux’s fixed-point theorem; optimal control; nonlinear delay system; Darboux's fixed-point theorem.},
language = {eng},
number = {2},
pages = {[225]-233},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimal control of nonlinear delay systems with implicit derivative and quadratic performance},
url = {http://eudml.org/doc/33424},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Balachandran, Krishnan
AU - Rajagopal, N.
TI - Optimal control of nonlinear delay systems with implicit derivative and quadratic performance
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 2
SP - [225]
EP - 233
AB - The existence of optimal control for nonlinear delay systems having an implicit derivative with quadratic performance criteria is proved. The results are established by an iterative technique and using the Darbo fixed point theorem.
LA - eng
KW - optimal control; nonlinear delay system; Darboux’s fixed-point theorem; optimal control; nonlinear delay system; Darboux's fixed-point theorem.
UR - http://eudml.org/doc/33424
ER -
References
top- Athans M., Falb P. L., Optimal Control, McGraw–Hill, New York 1966 Zbl0186.22501MR0204181
- Balachandran K., 10.1080/00207178708933892, Internat. J. Control 46 (1987), 1, 193–200 (1987) Zbl0629.93010MR0895702DOI10.1080/00207178708933892
- Balachandran K., 10.1080/00207178908559666, Internat. J. Control 49 (1989), 3, 769–775 (1989) Zbl0681.49001MR0990313DOI10.1080/00207178908559666
- Balachandran K., Dauer J. P., 10.1007/BF00938943, J. Optim. Theory Appl. 53 (1987), 1, 345–352 (1987) Zbl0596.93010MR0891093DOI10.1007/BF00938943
- Balachandran K., Ramaswamy R. S., Optimal control for nonlinear multiple delay systems with quadratic performance, Journal A 27 (1986), 1, 37–40 (1986) Zbl0583.93027
- Balachandran K., Somasundaram D., 10.1017/S0334270000005750, J. Austral. Math. Soc. Ser. B 29 (1987), 249–255 (1987) Zbl0623.49002MR0905808DOI10.1017/S0334270000005750
- Dacka C., 10.1109/TAC.1980.1102287, IEEE Trans. Automat. Control 25 (1980), 3, 263–266 (1980) Zbl0439.93006MR0567386DOI10.1109/TAC.1980.1102287
- Dauer J. P., Balachandran K., 10.1002/oca.4660140206, Optimal Control Appl. Methods 24 (1993), 1, 145–152 (1993) MR1228381DOI10.1002/oca.4660140206
- Malek–Zavarei M., 10.1007/BF01686725, J. Optim. Theory Appl. 30 (1980), 4, 621–633 (1980) MR0572160DOI10.1007/BF01686725
- Sadovskii B. J., 10.1070/RM1972v027n01ABEH001364, Russian Math. Surveys 27 (1972), 1, 85–155 (1972) MR0428132DOI10.1070/RM1972v027n01ABEH001364
- Yamamoto Y., 10.1016/0022-247X(78)90042-2, J. Math. Anal. Appl. 64 (1978), 2, 348–353 (1978) Zbl0378.49024MR0479536DOI10.1016/0022-247X(78)90042-2
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.