Contiguity and LAN-property of sequences of Poisson processes
Kybernetika (1999)
- Volume: 35, Issue: 3, page [281]-308
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLiese, Friedrich, and Lorz, Udo. "Contiguity and LAN-property of sequences of Poisson processes." Kybernetika 35.3 (1999): [281]-308. <http://eudml.org/doc/33429>.
@article{Liese1999,
abstract = {Using the concept of Hellinger integrals, necessary and sufficient conditions are established for the contiguity of two sequences of distributions of Poisson point processes with an arbitrary state space. The distribution of logarithm of the likelihood ratio is shown to be infinitely divisible. The canonical measure is expressed in terms of the intensity measures. Necessary and sufficient conditions for the LAN-property are formulated in terms of the corresponding intensity measures.},
author = {Liese, Friedrich, Lorz, Udo},
journal = {Kybernetika},
keywords = {Poisson point process; local asymptotic normality; Hellinger integral; likelihood ratio; Poisson point process; local asymptotic normality; Hellinger integral; likelihood ratio},
language = {eng},
number = {3},
pages = {[281]-308},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Contiguity and LAN-property of sequences of Poisson processes},
url = {http://eudml.org/doc/33429},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Liese, Friedrich
AU - Lorz, Udo
TI - Contiguity and LAN-property of sequences of Poisson processes
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 3
SP - [281]
EP - 308
AB - Using the concept of Hellinger integrals, necessary and sufficient conditions are established for the contiguity of two sequences of distributions of Poisson point processes with an arbitrary state space. The distribution of logarithm of the likelihood ratio is shown to be infinitely divisible. The canonical measure is expressed in terms of the intensity measures. Necessary and sufficient conditions for the LAN-property are formulated in terms of the corresponding intensity measures.
LA - eng
KW - Poisson point process; local asymptotic normality; Hellinger integral; likelihood ratio; Poisson point process; local asymptotic normality; Hellinger integral; likelihood ratio
UR - http://eudml.org/doc/33429
ER -
References
top- Brown M., 10.1214/aoms/1177693429, Ann. Math. Statist. 42 (1971), 773–776 (1971) Zbl0235.60044MR0343360DOI10.1214/aoms/1177693429
- Csiszár I., Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität Markoffscher Ketten, Publ. Math. Inst. Hungar. Acad. Sci., Ser. A 8 (1963), 85–108 (1963) MR0164374
- Jacod J., Shiryaev A. N., Limit Theorems for Stochastic Processes, Springer–Verlag, Berlin 1987 Zbl1018.60002MR0959133
- Karr A. F., Point Processes and their Statistical Inference, Marcel Dekker, New York 1986 Zbl0733.62088MR0851982
- Kutoyants, Yu. A., Parameter Estimation for Stochastic Processes, Helderman, Berlin 1984 Zbl0542.62073MR0777685
- Kutoyants, Yu. A., Statistical inference for spatial Poisson processes, Lab. de Stat. et Proc. Univ. du Maine, Le Mans, manuscript of forthcoming monography (1996) (1996) MR1644620
- LeCam L., Locally asymptotically normal families of distributions, Univ. Calif. Publ. Statist. 3 (1960), 37–98 (1960) MR0126903
- Liese F., 10.1002/mana.19750700116, Math. Nachr. 70 (1975), 183–196 (1975) Zbl0339.60052MR0478321DOI10.1002/mana.19750700116
- Liese F., 10.1080/02331888608801912, Statistics 17 (1986), 63–78 (1986) Zbl0598.60042MR0827946DOI10.1080/02331888608801912
- Liese F., Vajda I., Convex Statistical Distances, Teubner, Leipzig 1987 Zbl0656.62004MR0926905
- Lorz U., Sekundärgröen Poissonscher Punktprozesse – Grenzwertsätze und Abschätzungen der Konvergenzgeschwindigkeit, Rostock. Math. Kolloq. 29 (1986), 99–111 (1986) MR0863258
- Lorz U., Beiträge zur Statistik unbegrenzt teilbarer Felder mit unabhängigen Zuwächsen, Dissertation, Univ. Rostock 1987 Zbl0682.62072
- Lorz U., Heinrich L., 10.1080/02331889108802342, Statistics 22 (1991), 627– 649 (1991) MR1128489DOI10.1080/02331889108802342
- Mecke J., 10.1007/BF00535466, Z. Wahrsch. verw. Geb. 9 (1967), 36–58 (1967) MR0228027DOI10.1007/BF00535466
- Petrov V. V., Sums of Independent Random Variables, Akademie–Verlag, Berlin 1975 Zbl1125.60024MR0388499
- Strasser H., Mathematical Theory of Statistics, de Gruyter, Berlin 1985 Zbl0594.62017MR0812467
- Vajda I., Theory of Statistical Inference and Information, Kluwer, Dordrecht 1989 Zbl0711.62002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.