On noncooperative nonlinear differential games
Kybernetika (1999)
- Volume: 35, Issue: 4, page [487]-498
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRoubíček, Tomáš. "On noncooperative nonlinear differential games." Kybernetika 35.4 (1999): [487]-498. <http://eudml.org/doc/33442>.
@article{Roubíček1999,
abstract = {Noncooperative games with systems governed by nonlinear differential equations remain, in general, nonconvex even if continuously extended (i. e. relaxed) in terms of Young measures. However, if the individual payoff functionals are “enough” uniformly convex and the controlled system is only “slightly” nonlinear, then the relaxed game enjoys a globally convex structure, which guarantees existence of its Nash equilibria as well as existence of approximate Nash equilibria (in a suitable sense) for the original game.},
author = {Roubíček, Tomáš},
journal = {Kybernetika},
keywords = {noncooperative games; Nash equilibria; differential games; globally convex structure; noncooperative games; Nash equilibria; differential games; globally convex structure},
language = {eng},
number = {4},
pages = {[487]-498},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On noncooperative nonlinear differential games},
url = {http://eudml.org/doc/33442},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Roubíček, Tomáš
TI - On noncooperative nonlinear differential games
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 4
SP - [487]
EP - 498
AB - Noncooperative games with systems governed by nonlinear differential equations remain, in general, nonconvex even if continuously extended (i. e. relaxed) in terms of Young measures. However, if the individual payoff functionals are “enough” uniformly convex and the controlled system is only “slightly” nonlinear, then the relaxed game enjoys a globally convex structure, which guarantees existence of its Nash equilibria as well as existence of approximate Nash equilibria (in a suitable sense) for the original game.
LA - eng
KW - noncooperative games; Nash equilibria; differential games; globally convex structure; noncooperative games; Nash equilibria; differential games; globally convex structure
UR - http://eudml.org/doc/33442
ER -
References
top- Balder E. J., 10.1016/0022-247X(79)90235-X, J. Math. Anal. Appl. 72 (1979), 391–398 (1979) Zbl0434.49007MR0559376DOI10.1016/0022-247X(79)90235-X
- Balder E. J., 10.1017/S0004972700002185, Bull. Austral. Math. Soc. 30 (1984), 463–475 (1984) Zbl0544.49008MR0766804DOI10.1017/S0004972700002185
- Balder E. J., 10.1287/moor.13.2.265, Math. Oper Res. 13 (1988), 265–276 (1988) Zbl0658.90104MR0942618DOI10.1287/moor.13.2.265
- Bensoussan A., 10.1137/0312037, SIAM J. Control 12 (1974), 460–499 (1974) Zbl0254.90066MR0384185DOI10.1137/0312037
- Gabasov R., Kirillova F., Qualitative Theory of Optimal Processes, Nauka, Moscow 1971 Zbl0339.49002MR0527204
- Kindler J., 10.1137/0322042, SIAM J. Control Optim. 22 (1984), 671–683 (1984) Zbl0545.90102MR0755136DOI10.1137/0322042
- Krasovskiĭ N. N., Subbotin A. I., Game Theoretical Control Problems, Springer, Berlin 1988 Zbl0649.90101MR0918771
- Lenhart S., Protopopescu V., Stojanovic S., 10.1007/BF01182976, Appl. Math. Optim. 28 (1993), 113–132 (1993) Zbl0789.49009MR1218250DOI10.1007/BF01182976
- Nash J., 10.2307/1969529, Ann. of Math. 54 (1951), 286–295 (1951) Zbl0045.08202MR0043432DOI10.2307/1969529
- Nikaidô H., Isoda K., 10.2140/pjm.1955.5.807, Pacific J. Math. 5 (1955), 807–815 (1955) MR0073910DOI10.2140/pjm.1955.5.807
- Nikol’skiĭ M. S., On a minimax control problem, In: Optimal Control and Differential Games (L. S. Pontryagin, ed.), Proc. Steklov Inst. Math. 1990, pp. 209–214 (1990)
- Nowak A. S., 10.1016/0022-247X(92)90281-H, J. Math. Anal. Appl. 163 (1992), 104–112 (1992) Zbl0778.90102MR1144709DOI10.1016/0022-247X(92)90281-H
- Patrone F., Well–posedness for Nash equilibria and related topics, In: Recent Developments in Well–Posed Variational Problems (R. Lucchetti and J. Revalski, eds.), Kluwer, 1995, pp. 211–227 (1995) Zbl0849.90131MR1351746
- Roubíček T., Relaxation in Optimization Theory and Variational Calculus, W. de Gruyter, Berlin 1997 MR1458067
- Roubíček T., Noncooperative games with elliptic systems, In: Proc. IFIP WG 7.2 Conf. Control of P.D.E., Chemnitz 1998, accepted (1998) MR1723990
- Sainte–Beuve M.-F., Some topological properties of vector measures with bounded variations and its applications, Ann. Mat. Pura Appl. 116 (1978), 317–379 (1978) MR0506985
- Schmidt W. H., Maximum principles for processes governed by integral equations in Banach spaces as sufficient optimality conditions, Beiträge zur Analysis 17 (1981), 85–93 (1981) Zbl0478.49023MR0663274
- Tan K. K., Yu J., Yuan X. Z., 10.1007/BF01243152, Internat. J. Game Theory 24 (1995), 217–222 (1995) Zbl0837.90126MR1349753DOI10.1007/BF01243152
- Tijs S. H., 10.1137/1023038, SIAM Rev. 23 (1981), 225–237 (1981) MR0618639DOI10.1137/1023038
- Warga J., Optimal Control of Differential and Functional Equations, Academic Press, New York 1972 Zbl0253.49001MR0372708
- Young L. C., Generalized curves and the existence of an attained absolute minimum in the calculus of variations, Comptes Rendus de la Société des Sciences et des Lettres de Varsovie, Classe III 30 (1937), 212–234 (1937) Zbl0019.21901
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.