Balanced reduction of linear periodic systems

Sauro Longhi; Giuseppe Orlando

Kybernetika (1999)

  • Volume: 35, Issue: 6, page [737]-751
  • ISSN: 0023-5954

Abstract

top
For linear periodic discrete-time systems the analysis of the model error introduced by a truncation on the balanced minimal realization is performed, and a bound for the infinity norm of the model error is introduced. The results represent an extension to the periodic systems of the well known results on the balanced truncation for time-invariant systems. The general case of periodically time-varying state-space dimension has been considered.

How to cite

top

Longhi, Sauro, and Orlando, Giuseppe. "Balanced reduction of linear periodic systems." Kybernetika 35.6 (1999): [737]-751. <http://eudml.org/doc/33459>.

@article{Longhi1999,
abstract = {For linear periodic discrete-time systems the analysis of the model error introduced by a truncation on the balanced minimal realization is performed, and a bound for the infinity norm of the model error is introduced. The results represent an extension to the periodic systems of the well known results on the balanced truncation for time-invariant systems. The general case of periodically time-varying state-space dimension has been considered.},
author = {Longhi, Sauro, Orlando, Giuseppe},
journal = {Kybernetika},
keywords = {balanced truncation; linear periodic system; model error; infinity norm; balanced truncation; linear periodic system; model error; infinity norm},
language = {eng},
number = {6},
pages = {[737]-751},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Balanced reduction of linear periodic systems},
url = {http://eudml.org/doc/33459},
volume = {35},
year = {1999},
}

TY - JOUR
AU - Longhi, Sauro
AU - Orlando, Giuseppe
TI - Balanced reduction of linear periodic systems
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 6
SP - [737]
EP - 751
AB - For linear periodic discrete-time systems the analysis of the model error introduced by a truncation on the balanced minimal realization is performed, and a bound for the infinity norm of the model error is introduced. The results represent an extension to the periodic systems of the well known results on the balanced truncation for time-invariant systems. The general case of periodically time-varying state-space dimension has been considered.
LA - eng
KW - balanced truncation; linear periodic system; model error; infinity norm; balanced truncation; linear periodic system; model error; infinity norm
UR - http://eudml.org/doc/33459
ER -

References

top
  1. Al–Saggaf U. M., Franklin G. F., An error bound for a discrete reduced order model of a linear multivariable system, IEEE Trans. Automat. Control AC–32 (1987), 9, 815–819 (1987) Zbl0622.93021
  2. Bittanti S., Deterministic and stochastic linear periodic systems, In: Time Series and Linear Systems (S. Bittanti, ed.), Springer–Verlag, Berlin 1986 MR0897824
  3. Bolzern P., Colaneri P., Existence and uniqueness conditions for the periodic solutions of the discrete–time periodic Lyapunov equations, In: Proc. of 25th Conference on Decision and Control, Athens 1986, pp. 1439–1443 (1986) 
  4. Bolzern P., Colaneri P., Scattolini R., 10.1109/TAC.1986.1104172, IEEE Trans. Automat. Control AC–31 (1986), 1057–1059 (1986) Zbl0606.93036DOI10.1109/TAC.1986.1104172
  5. Colaneri P., Longhi S., The lifted and cyclic reformulations in the minimal realization of linear discrete–time periodic systems, In: Proc. of the 1st IFAC Workshop on New Trends in Design of Control Systems, Smolenice 1994, pp. 329–334 (1994) 
  6. Colaneri P., Longhi S., 10.1016/0005-1098(94)00155-C, Automatica 31 (1995), 775–779 (1995) Zbl0822.93019MR1335982DOI10.1016/0005-1098(94)00155-C
  7. Evans D. S., 10.1137/0122006, SIAM J. Appl. Math. 22 (1972), 45–67 (1972) MR0378915DOI10.1137/0122006
  8. Flamm D. S., 10.1016/0167-6911(91)90093-T, Systems Control Lett. 17 (1991), 9–14 (1991) Zbl0729.93034MR1116110DOI10.1016/0167-6911(91)90093-T
  9. Fortuna L., Nunnari G., Gallo A., Model Order Reduction Techniques with Applications in Electrical Engineering, Springer–Verlag, Berlin 1992 
  10. Glover K., 10.1080/00207178408933239, Internat. J. Control 39 (1984), 6, 1115–1193 (1984) MR0748558DOI10.1080/00207178408933239
  11. Gohberg I., Kaashoek M. A., Lerer L., Minimality and realization of discrete time–varying systems, Oper. Theory: Adv. Appl. 56 (1992), 261–296 (1992) Zbl0242.93024MR1173922
  12. Grasselli O. M., Longhi S., 10.1016/0005-1098(88)90078-7, Automatica 24 (1988), 375–385 (1988) MR0947377DOI10.1016/0005-1098(88)90078-7
  13. Grasselli O. M., Longhi S., Zeros and poles of linear periodic discrete–time systems, Circuits Systems Signal Process. 7 (1988), 361–380 (1988) MR0962108
  14. Grasselli O. M., Longhi S., 10.1080/00207179108934179, Internat. J. Control 54 (1991), 613–633 (1991) Zbl0728.93065MR1117838DOI10.1080/00207179108934179
  15. Grasselli O. M., Longhi S., The geometric approach for linear periodic discrete–time systems, Linear Algebra Appl. 158 (1991), 27–60 (1991) Zbl0758.93044MR1126434
  16. Gree M., Limebeer D. J. N., Linear Robust Control, Prentice Hall, Englewood Cliffs, N. J. 1995 
  17. Mayer R. A., Burrus C. S., A unified analysis of multirate and periodically time–varying digital filters, Trans. Ccts Syst. CSA–22 (1975), 162–168 (1975) MR0392090
  18. Moore B. C., 10.1109/TAC.1981.1102568, Trans. Automat. Control AC–26 (1981), 17–32 (1981) MR0609248DOI10.1109/TAC.1981.1102568
  19. Park B., Verriest E. I., Canonical forms on discrete linear periodically time–varying systems and a control application, In: Proc. of the 28th IEEE Conference on Decision and Control, Tampa 1989, pp. 1220–1225 (1989) MR1038997
  20. Pernebo L., Silverman L. M., 10.1109/TAC.1982.1102945, IEEE Trans. Automat. Control AC–27 (1982), 2, 382–387 (1982) Zbl0482.93024MR0680103DOI10.1109/TAC.1982.1102945
  21. Salomon G., Zhou K., Wu E., A new balanced realization and model reduction method for unstable systems, In: Proc. of 14th IFAC World Congress, Beijing 1999, vol. D, pp. 123–128 (1999) 
  22. Shokoohi S., Silverman L. M., Dooren P. Van, Linear time–variable systems: balancing and model reduction, Trans. Automat. Control AC-28 (1983), 8, 810–822 (1983) MR0717839
  23. Shokoohi S., Silverman L. M., Dooren P. Van, 10.1016/0005-1098(84)90065-7, Automatica 20 (1984), 1, 59–67 (1984) MR0737946DOI10.1016/0005-1098(84)90065-7
  24. Varga A., 10.1080/002071797224360, Internat. J. Control 67 (1997), 69–87 (1997) Zbl0873.93057MR1685840DOI10.1080/002071797224360
  25. Xie B., Aripirala R. K. A. V., Syrmos V. L., Model reduction of linear discrete–time periodic systems using Hankel–norm approximation, In: Proc. of IFAC 13th World Congress, San Francisco, 1996, pp. 245–250 (1996) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.