Balanced reduction of linear periodic systems
Sauro Longhi; Giuseppe Orlando
Kybernetika (1999)
- Volume: 35, Issue: 6, page [737]-751
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLonghi, Sauro, and Orlando, Giuseppe. "Balanced reduction of linear periodic systems." Kybernetika 35.6 (1999): [737]-751. <http://eudml.org/doc/33459>.
@article{Longhi1999,
abstract = {For linear periodic discrete-time systems the analysis of the model error introduced by a truncation on the balanced minimal realization is performed, and a bound for the infinity norm of the model error is introduced. The results represent an extension to the periodic systems of the well known results on the balanced truncation for time-invariant systems. The general case of periodically time-varying state-space dimension has been considered.},
author = {Longhi, Sauro, Orlando, Giuseppe},
journal = {Kybernetika},
keywords = {balanced truncation; linear periodic system; model error; infinity norm; balanced truncation; linear periodic system; model error; infinity norm},
language = {eng},
number = {6},
pages = {[737]-751},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Balanced reduction of linear periodic systems},
url = {http://eudml.org/doc/33459},
volume = {35},
year = {1999},
}
TY - JOUR
AU - Longhi, Sauro
AU - Orlando, Giuseppe
TI - Balanced reduction of linear periodic systems
JO - Kybernetika
PY - 1999
PB - Institute of Information Theory and Automation AS CR
VL - 35
IS - 6
SP - [737]
EP - 751
AB - For linear periodic discrete-time systems the analysis of the model error introduced by a truncation on the balanced minimal realization is performed, and a bound for the infinity norm of the model error is introduced. The results represent an extension to the periodic systems of the well known results on the balanced truncation for time-invariant systems. The general case of periodically time-varying state-space dimension has been considered.
LA - eng
KW - balanced truncation; linear periodic system; model error; infinity norm; balanced truncation; linear periodic system; model error; infinity norm
UR - http://eudml.org/doc/33459
ER -
References
top- Al–Saggaf U. M., Franklin G. F., An error bound for a discrete reduced order model of a linear multivariable system, IEEE Trans. Automat. Control AC–32 (1987), 9, 815–819 (1987) Zbl0622.93021
- Bittanti S., Deterministic and stochastic linear periodic systems, In: Time Series and Linear Systems (S. Bittanti, ed.), Springer–Verlag, Berlin 1986 MR0897824
- Bolzern P., Colaneri P., Existence and uniqueness conditions for the periodic solutions of the discrete–time periodic Lyapunov equations, In: Proc. of 25th Conference on Decision and Control, Athens 1986, pp. 1439–1443 (1986)
- Bolzern P., Colaneri P., Scattolini R., 10.1109/TAC.1986.1104172, IEEE Trans. Automat. Control AC–31 (1986), 1057–1059 (1986) Zbl0606.93036DOI10.1109/TAC.1986.1104172
- Colaneri P., Longhi S., The lifted and cyclic reformulations in the minimal realization of linear discrete–time periodic systems, In: Proc. of the 1st IFAC Workshop on New Trends in Design of Control Systems, Smolenice 1994, pp. 329–334 (1994)
- Colaneri P., Longhi S., 10.1016/0005-1098(94)00155-C, Automatica 31 (1995), 775–779 (1995) Zbl0822.93019MR1335982DOI10.1016/0005-1098(94)00155-C
- Evans D. S., 10.1137/0122006, SIAM J. Appl. Math. 22 (1972), 45–67 (1972) MR0378915DOI10.1137/0122006
- Flamm D. S., 10.1016/0167-6911(91)90093-T, Systems Control Lett. 17 (1991), 9–14 (1991) Zbl0729.93034MR1116110DOI10.1016/0167-6911(91)90093-T
- Fortuna L., Nunnari G., Gallo A., Model Order Reduction Techniques with Applications in Electrical Engineering, Springer–Verlag, Berlin 1992
- Glover K., 10.1080/00207178408933239, Internat. J. Control 39 (1984), 6, 1115–1193 (1984) MR0748558DOI10.1080/00207178408933239
- Gohberg I., Kaashoek M. A., Lerer L., Minimality and realization of discrete time–varying systems, Oper. Theory: Adv. Appl. 56 (1992), 261–296 (1992) Zbl0242.93024MR1173922
- Grasselli O. M., Longhi S., 10.1016/0005-1098(88)90078-7, Automatica 24 (1988), 375–385 (1988) MR0947377DOI10.1016/0005-1098(88)90078-7
- Grasselli O. M., Longhi S., Zeros and poles of linear periodic discrete–time systems, Circuits Systems Signal Process. 7 (1988), 361–380 (1988) MR0962108
- Grasselli O. M., Longhi S., 10.1080/00207179108934179, Internat. J. Control 54 (1991), 613–633 (1991) Zbl0728.93065MR1117838DOI10.1080/00207179108934179
- Grasselli O. M., Longhi S., The geometric approach for linear periodic discrete–time systems, Linear Algebra Appl. 158 (1991), 27–60 (1991) Zbl0758.93044MR1126434
- Gree M., Limebeer D. J. N., Linear Robust Control, Prentice Hall, Englewood Cliffs, N. J. 1995
- Mayer R. A., Burrus C. S., A unified analysis of multirate and periodically time–varying digital filters, Trans. Ccts Syst. CSA–22 (1975), 162–168 (1975) MR0392090
- Moore B. C., 10.1109/TAC.1981.1102568, Trans. Automat. Control AC–26 (1981), 17–32 (1981) MR0609248DOI10.1109/TAC.1981.1102568
- Park B., Verriest E. I., Canonical forms on discrete linear periodically time–varying systems and a control application, In: Proc. of the 28th IEEE Conference on Decision and Control, Tampa 1989, pp. 1220–1225 (1989) MR1038997
- Pernebo L., Silverman L. M., 10.1109/TAC.1982.1102945, IEEE Trans. Automat. Control AC–27 (1982), 2, 382–387 (1982) Zbl0482.93024MR0680103DOI10.1109/TAC.1982.1102945
- Salomon G., Zhou K., Wu E., A new balanced realization and model reduction method for unstable systems, In: Proc. of 14th IFAC World Congress, Beijing 1999, vol. D, pp. 123–128 (1999)
- Shokoohi S., Silverman L. M., Dooren P. Van, Linear time–variable systems: balancing and model reduction, Trans. Automat. Control AC-28 (1983), 8, 810–822 (1983) MR0717839
- Shokoohi S., Silverman L. M., Dooren P. Van, 10.1016/0005-1098(84)90065-7, Automatica 20 (1984), 1, 59–67 (1984) MR0737946DOI10.1016/0005-1098(84)90065-7
- Varga A., 10.1080/002071797224360, Internat. J. Control 67 (1997), 69–87 (1997) Zbl0873.93057MR1685840DOI10.1080/002071797224360
- Xie B., Aripirala R. K. A. V., Syrmos V. L., Model reduction of linear discrete–time periodic systems using Hankel–norm approximation, In: Proc. of IFAC 13th World Congress, San Francisco, 1996, pp. 245–250 (1996)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.