Controllability of semilinear functional integrodifferential systems in Banach spaces
Krishnan Balachandran; Rathinasamy Sakthivel
Kybernetika (2000)
- Volume: 36, Issue: 4, page [465]-476
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBalachandran, Krishnan, and Sakthivel, Rathinasamy. "Controllability of semilinear functional integrodifferential systems in Banach spaces." Kybernetika 36.4 (2000): [465]-476. <http://eudml.org/doc/33496>.
@article{Balachandran2000,
abstract = {Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.},
author = {Balachandran, Krishnan, Sakthivel, Rathinasamy},
journal = {Kybernetika},
keywords = {controllability; integro-differential system; Banach space; controllability; integro-differential system; Banach space},
language = {eng},
number = {4},
pages = {[465]-476},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Controllability of semilinear functional integrodifferential systems in Banach spaces},
url = {http://eudml.org/doc/33496},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Balachandran, Krishnan
AU - Sakthivel, Rathinasamy
TI - Controllability of semilinear functional integrodifferential systems in Banach spaces
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 4
SP - [465]
EP - 476
AB - Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.
LA - eng
KW - controllability; integro-differential system; Banach space; controllability; integro-differential system; Banach space
UR - http://eudml.org/doc/33496
ER -
References
top- Balachandran K., Dauer J. P., 10.1006/jmaa.1997.5725, J. Math. Anal. Appl. 217 (1998), 335–348 (1998) Zbl0927.93015MR1492093DOI10.1006/jmaa.1997.5725
- Balachandran K., Dauer J. P., Balasubramaniam P., 10.1007/BF02192022, J. Optim. Theory Appl. 88 (1996), 61–75 (1996) MR1367033DOI10.1007/BF02192022
- Chukwu E. N., Lenhart S. M., 10.1007/BF00940064, J. Optim. Theory Appl. 68 (1991), 437–462 (1991) Zbl0697.49040MR1097312DOI10.1007/BF00940064
- Do V. N., 10.1016/0167-6911(89)90047-9, Systems Control Lett. 12 (1989), 365–371 (1989) Zbl0679.93004MR1000345DOI10.1016/0167-6911(89)90047-9
- Fitzgibbon W. E., 10.1016/0362-546X(80)90075-9, Nonlinear Anal. 4 (1980), 745-760 (1980) MR0582543DOI10.1016/0362-546X(80)90075-9
- Heard M. L., 10.1016/0022-247X(81)90101-3, J. Math. Anal. Appl. 80 (1981), 175–202 (1981) Zbl0468.45011MR0614252DOI10.1016/0022-247X(81)90101-3
- Kwun Y. C., Park J. Y., Ryu J. W., Approximate controllability and controllability for delay Volterra systems, Bull. Korean Math. Soc. 28 (1991), 131–145 (1991) MR1127732
- III J. H. Lightbourne, III S. M. Rankin, 10.1016/0022-247X(83)90178-6, J. Math. Anal. Appl. 93 (1983), 328–337 (1983) MR0700149DOI10.1016/0022-247X(83)90178-6
- MacCamy R., An integrodifferential equation with applications in heat flow, Quart. Appl. Math. 35 (1977/78), 1–19 (1977) MR0452184
- Ntouyas S. K., Tsamatos P. Ch., 10.1006/jmaa.1997.5425, J. Math. Anal. Appl. 210 (1997), 679–687 (1997) Zbl0884.34069MR1453198DOI10.1006/jmaa.1997.5425
- Ntouyas S. K., Global existence for functional semilinear integrodifferential equations, Arch. Math. 34 (1998), 239–256 (1998) MR1645312
- Naito K., 10.1137/0325040, SIAM J. Control Optim. 25 (1987), 715–722 (1987) Zbl0617.93004MR0885194DOI10.1137/0325040
- Naito K., 10.1007/BF00938799, J. Optim. Theory Appl. 60 (1989), 57–65 (1989) Zbl0632.93007MR0981945DOI10.1007/BF00938799
- Naito K., 10.1016/0362-546X(92)90050-O, Nonlinear Anal. Theory, Methods and Applications 18 (1992), 99–108 (1992) Zbl0768.93011MR1138645DOI10.1016/0362-546X(92)90050-O
- Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York 1983 Zbl0516.47023MR0710486
- Quinn M. D., Carmichael N., An approach to nonlinear control problems using fixed point methods, degree theory, and pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984–1985), 197–219 (1984) MR0767382
- Schaefer H., 10.1007/BF01362380, Math. Ann. 129 (1955), 415–416 (1955) Zbl0064.35703MR0071723DOI10.1007/BF01362380
- Webb G., 10.1090/S0002-9939-1978-0467214-4, Proc. Amer. Math. Soc. 69 (1978), 255–260 (1978) Zbl0388.45012MR0467214DOI10.1090/S0002-9939-1978-0467214-4
- Yamamoto M., Park J. Y., 10.1007/BF00940936, J. Optim. Theory Appl. 66 (1990), 515–532 (1990) Zbl0682.93012MR1080262DOI10.1007/BF00940936
- Zhou H. X., 10.1137/0321033, SIAM J. Control Optim. 21 (1983), 551–565 (1983) Zbl0516.93009MR0704474DOI10.1137/0321033
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.