Controllability of semilinear functional integrodifferential systems in Banach spaces

Krishnan Balachandran; Rathinasamy Sakthivel

Kybernetika (2000)

  • Volume: 36, Issue: 4, page [465]-476
  • ISSN: 0023-5954

Abstract

top
Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.

How to cite

top

Balachandran, Krishnan, and Sakthivel, Rathinasamy. "Controllability of semilinear functional integrodifferential systems in Banach spaces." Kybernetika 36.4 (2000): [465]-476. <http://eudml.org/doc/33496>.

@article{Balachandran2000,
abstract = {Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.},
author = {Balachandran, Krishnan, Sakthivel, Rathinasamy},
journal = {Kybernetika},
keywords = {controllability; integro-differential system; Banach space; controllability; integro-differential system; Banach space},
language = {eng},
number = {4},
pages = {[465]-476},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Controllability of semilinear functional integrodifferential systems in Banach spaces},
url = {http://eudml.org/doc/33496},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Balachandran, Krishnan
AU - Sakthivel, Rathinasamy
TI - Controllability of semilinear functional integrodifferential systems in Banach spaces
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 4
SP - [465]
EP - 476
AB - Sufficient conditions for controllability of semilinear functional integrodifferential systems in a Banach space are established. The results are obtained by using the Schaefer fixed-point theorem.
LA - eng
KW - controllability; integro-differential system; Banach space; controllability; integro-differential system; Banach space
UR - http://eudml.org/doc/33496
ER -

References

top
  1. Balachandran K., Dauer J. P., 10.1006/jmaa.1997.5725, J. Math. Anal. Appl. 217 (1998), 335–348 (1998) Zbl0927.93015MR1492093DOI10.1006/jmaa.1997.5725
  2. Balachandran K., Dauer J. P., Balasubramaniam P., 10.1007/BF02192022, J. Optim. Theory Appl. 88 (1996), 61–75 (1996) MR1367033DOI10.1007/BF02192022
  3. Chukwu E. N., Lenhart S. M., 10.1007/BF00940064, J. Optim. Theory Appl. 68 (1991), 437–462 (1991) Zbl0697.49040MR1097312DOI10.1007/BF00940064
  4. Do V. N., 10.1016/0167-6911(89)90047-9, Systems Control Lett. 12 (1989), 365–371 (1989) Zbl0679.93004MR1000345DOI10.1016/0167-6911(89)90047-9
  5. Fitzgibbon W. E., 10.1016/0362-546X(80)90075-9, Nonlinear Anal. 4 (1980), 745-760 (1980) MR0582543DOI10.1016/0362-546X(80)90075-9
  6. Heard M. L., 10.1016/0022-247X(81)90101-3, J. Math. Anal. Appl. 80 (1981), 175–202 (1981) Zbl0468.45011MR0614252DOI10.1016/0022-247X(81)90101-3
  7. Kwun Y. C., Park J. Y., Ryu J. W., Approximate controllability and controllability for delay Volterra systems, Bull. Korean Math. Soc. 28 (1991), 131–145 (1991) MR1127732
  8. III J. H. Lightbourne, III S. M. Rankin, 10.1016/0022-247X(83)90178-6, J. Math. Anal. Appl. 93 (1983), 328–337 (1983) MR0700149DOI10.1016/0022-247X(83)90178-6
  9. MacCamy R., An integrodifferential equation with applications in heat flow, Quart. Appl. Math. 35 (1977/78), 1–19 (1977) MR0452184
  10. Ntouyas S. K., Tsamatos P. Ch., 10.1006/jmaa.1997.5425, J. Math. Anal. Appl. 210 (1997), 679–687 (1997) Zbl0884.34069MR1453198DOI10.1006/jmaa.1997.5425
  11. Ntouyas S. K., Global existence for functional semilinear integrodifferential equations, Arch. Math. 34 (1998), 239–256 (1998) MR1645312
  12. Naito K., 10.1137/0325040, SIAM J. Control Optim. 25 (1987), 715–722 (1987) Zbl0617.93004MR0885194DOI10.1137/0325040
  13. Naito K., 10.1007/BF00938799, J. Optim. Theory Appl. 60 (1989), 57–65 (1989) Zbl0632.93007MR0981945DOI10.1007/BF00938799
  14. Naito K., 10.1016/0362-546X(92)90050-O, Nonlinear Anal. Theory, Methods and Applications 18 (1992), 99–108 (1992) Zbl0768.93011MR1138645DOI10.1016/0362-546X(92)90050-O
  15. Pazy A., Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York 1983 Zbl0516.47023MR0710486
  16. Quinn M. D., Carmichael N., An approach to nonlinear control problems using fixed point methods, degree theory, and pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984–1985), 197–219 (1984) MR0767382
  17. Schaefer H., 10.1007/BF01362380, Math. Ann. 129 (1955), 415–416 (1955) Zbl0064.35703MR0071723DOI10.1007/BF01362380
  18. Webb G., 10.1090/S0002-9939-1978-0467214-4, Proc. Amer. Math. Soc. 69 (1978), 255–260 (1978) Zbl0388.45012MR0467214DOI10.1090/S0002-9939-1978-0467214-4
  19. Yamamoto M., Park J. Y., 10.1007/BF00940936, J. Optim. Theory Appl. 66 (1990), 515–532 (1990) Zbl0682.93012MR1080262DOI10.1007/BF00940936
  20. Zhou H. X., 10.1137/0321033, SIAM J. Control Optim. 21 (1983), 551–565 (1983) Zbl0516.93009MR0704474DOI10.1137/0321033

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.