A new indirect adaptive pole placer for possibly non-minimum phase MIMO linear systems
Kostas G. Arvanitis; Grigoris Kalogeropoulos; I. K. Kookos
Kybernetika (2000)
- Volume: 36, Issue: 5, page [497]-529
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topArvanitis, Kostas G., Kalogeropoulos, Grigoris, and Kookos, I. K.. "A new indirect adaptive pole placer for possibly non-minimum phase MIMO linear systems." Kybernetika 36.5 (2000): [497]-529. <http://eudml.org/doc/33499>.
@article{Arvanitis2000,
abstract = {The use of generalized sampled-data hold functions, in order to synthesize adaptive pole placers for linear multiple-input, multiple-output systems with unknown parameters, is investigated in this paper, for the first time. Such a control scheme relies on a periodically varying controller, which suitably modulates the sampled outputs of the controlled plant. The proposed control strategy allows us to assign the poles of the sampled closed-loop system arbitrarily in desired locations, and does not make assumptions on the plant other than controllability and observability of the continuous and the sampled system, and the knowledge of a set of structural indices, namely the locally minimum controllability indices of the continuous-time plant. The indirect adaptive control scheme presented here, estimates the unknown plant parameters (and hence the parameters of the desired modulating matrix function) on line, from sequential data of the inputs and the outputs of the plant, which are recursively updated within the time limit imposed by a fundamental sampling period $T_0$. The controller determination is based on the transformation of the discrete analogue of the system under control to a phase-variable canonical form, prior to the application of the control design procedure. The solution of the problem can, then, be obtained by a quite simple utilization of the concept of state similarity transformation, whereas known indirect adaptive pole placement techniques require the solution of matrix polynomial Diophantine equations. Moreover, in many cases, the solution of the Diophantine equation for a desired set of closed-loop eigenvalues might yield an unstable controller, and the overall adaptive pole placement scheme is then unstable with unstable compensators because their outputs are unbounded. The proposed strategy avoids these problems, since here gain controllers are essentially needed to be designed. Moreover, persistency of excitation and, therefore, parameter convergence, of the continuous-time plant is provided without making assumptions either on the existence of specific convex sets in which the estimated parameters belong or on the coprimeness of the polynomials describing the ARMA model, or finally on the richness of the reference signals, as compared to known adaptive pole placement schemes.},
author = {Arvanitis, Kostas G., Kalogeropoulos, Grigoris, Kookos, I. K.},
journal = {Kybernetika},
keywords = {generalized sampled-data; pole placement problem; adaptive control; generalized sampled-data; pole placement problem; adaptive control},
language = {eng},
number = {5},
pages = {[497]-529},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new indirect adaptive pole placer for possibly non-minimum phase MIMO linear systems},
url = {http://eudml.org/doc/33499},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Arvanitis, Kostas G.
AU - Kalogeropoulos, Grigoris
AU - Kookos, I. K.
TI - A new indirect adaptive pole placer for possibly non-minimum phase MIMO linear systems
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 5
SP - [497]
EP - 529
AB - The use of generalized sampled-data hold functions, in order to synthesize adaptive pole placers for linear multiple-input, multiple-output systems with unknown parameters, is investigated in this paper, for the first time. Such a control scheme relies on a periodically varying controller, which suitably modulates the sampled outputs of the controlled plant. The proposed control strategy allows us to assign the poles of the sampled closed-loop system arbitrarily in desired locations, and does not make assumptions on the plant other than controllability and observability of the continuous and the sampled system, and the knowledge of a set of structural indices, namely the locally minimum controllability indices of the continuous-time plant. The indirect adaptive control scheme presented here, estimates the unknown plant parameters (and hence the parameters of the desired modulating matrix function) on line, from sequential data of the inputs and the outputs of the plant, which are recursively updated within the time limit imposed by a fundamental sampling period $T_0$. The controller determination is based on the transformation of the discrete analogue of the system under control to a phase-variable canonical form, prior to the application of the control design procedure. The solution of the problem can, then, be obtained by a quite simple utilization of the concept of state similarity transformation, whereas known indirect adaptive pole placement techniques require the solution of matrix polynomial Diophantine equations. Moreover, in many cases, the solution of the Diophantine equation for a desired set of closed-loop eigenvalues might yield an unstable controller, and the overall adaptive pole placement scheme is then unstable with unstable compensators because their outputs are unbounded. The proposed strategy avoids these problems, since here gain controllers are essentially needed to be designed. Moreover, persistency of excitation and, therefore, parameter convergence, of the continuous-time plant is provided without making assumptions either on the existence of specific convex sets in which the estimated parameters belong or on the coprimeness of the polynomials describing the ARMA model, or finally on the richness of the reference signals, as compared to known adaptive pole placement schemes.
LA - eng
KW - generalized sampled-data; pole placement problem; adaptive control; generalized sampled-data; pole placement problem; adaptive control
UR - http://eudml.org/doc/33499
ER -
References
top- Abramovitch D. Y., Franklin G. F., 10.1109/9.50341, IEEE Trans. Automat. Control AC-35 (1990), 303–306 (1990) Zbl0707.93030MR1044025DOI10.1109/9.50341
- Al-Rahmani H. M., Franklin G. F., 10.1109/9.8657, IEEE Trans. Automat. Control 34 (1989), 99–103 (1989) Zbl0657.93024MR0970938DOI10.1109/9.8657
- Anderson B. D. O., Johnstone R. M., 10.1109/TAC.1985.1103799, IEEE Trans. Automat. Control AC-30 (1985), 11–22 (1985) Zbl0553.93032MR0777073DOI10.1109/TAC.1985.1103799
- Araki M., Hagiwara T., 10.1080/00207178608933692, Internat. J. Control 44 (1986), 1661–1673 (1986) Zbl0613.93040DOI10.1080/00207178608933692
- Arvanitis K. G., 10.1093/imamci/12.4.363, IMA J. Math. Control Inform. 12 (1995), 363–394 (1995) Zbl0848.93033MR1363319DOI10.1093/imamci/12.4.363
- Arvanitis K. G., 10.1002/(SICI)1099-1115(199611)10:6<673::AID-ACS405>3.0.CO;2-M, Internat. J. Adaptive Control Signal Process. 10 (1996), 673–705 (1996) Zbl0876.93056MR1423712DOI10.1002/(SICI)1099-1115(199611)10:6<673::AID-ACS405>3.0.CO;2-M
- Arvanitis K. G., An indirect model reference adaptive control algorithm based on multidetected–output controllers, Appl. Math. Comput. Sci. 6 (1996), 667–706 (1996) Zbl0867.93048MR1438134
- Arvanitis K. G., Adaptive LQ regulation by multirate–output controllers, Found. Computing Dec. Sciences 21 (1996), 183–213 (1996) MR1440295
- Arvanitis K. G., An adaptive decoupling compensator for linear systems based on periodic multirate–input controllers, J. Math. Syst. Est. Control 8 (1998), 373–376 (1998) Zbl1126.93358MR1650078
- Arvanitis K. G., Kalogeropoulos G., A new periodic multirate model reference adaptive controller for possibly nonstably invertible plants, Kybernetika 33 (1997), 203–220 (1997) MR1454279
- Arvanitis K. G., Paraskevopoulos P. N., Exact model matching of linear systems using multirate digital controllers: In: Proc, 2nd European Control Conference, Groningen 1993, vol. 3, pp. 1648–1652 (1993)
- Arvanitis K. G., Paraskevopoulos P. N., 10.1007/BF02191981, J. Optim. Theory Appl. 84 (1995), 471–493 (1995) MR1326071DOI10.1007/BF02191981
- Åstrom K. J., Wittenmark B., Analysis of a self–tuning regulator for non–minimum phase systems, In: Proc. IFAC Stochast. Control Symposium, Budapest 1974, pp. 165–173 (1974)
- Åstrom K. J., Wittenmark B., Self–tuning controllers based on pole–zero placement, Proc. IEE–D 127 (1980), 120–130 (1980)
- Chammas A. B., Leondes C. T., 10.1080/00207177808922419, Parts I and II. Internat. J. Control 27 (1978), 885–903 (1978) Zbl0388.93022MR0504221DOI10.1080/00207177808922419
- Das M., Cristi R., 10.1109/9.53562, IEEE Trans. Automat. Control AC-35 (1990), 752–756 (1990) Zbl0800.93452DOI10.1109/9.53562
- Egardt B., 10.1109/TAC.1980.1102416, IEEE Trans. Automomat. Control AC-25 (1980), 710–716 (1980) MR0583447DOI10.1109/TAC.1980.1102416
- Eising R., Hautus M. L. J., Realizations Algorithms for Systems over a Principal Ideal Domain, Memorandum COSOR 78–25, Eindhoven University of Technology, Dept. of Mathematics, Eindhoven 1978
- Elliott H., 10.1109/TAC.1982.1102963, IEEE Trans. Automat. Control AC-27 (1982), 720–722 (1982) Zbl0493.93033DOI10.1109/TAC.1982.1102963
- Elliott H., Cristi R., Das M., 10.1109/TAC.1985.1103954, IEEE Trans. Automat. Control AC-30 (1985), 348–356 (1985) MR0786712DOI10.1109/TAC.1985.1103954
- Elliott H., Wolovich W. A., Das M., 10.1109/TAC.1984.1103491, IEEE Trans. Automat. Control AC-29 (1984), 221–229 (1984) Zbl0534.93026DOI10.1109/TAC.1984.1103491
- Giri F., Dion J. M., Dugard L., M’Saad M., 10.1109/9.16434, IEEE Trans. Automat. Control AC-34 (1989), 356–359 (1989) Zbl0666.93084MR0980372DOI10.1109/9.16434
- Giri F., M’Saad M., Dugard L., Dion J. M., 10.1002/acs.4480020103, Internat. J. Adaptive Control Signal Process. 2 (1988), 33–47 (1988) MR0941862DOI10.1002/acs.4480020103
- Goodwin G. C., Sin K. S., Adaptive Filtering, Prediction and Control, Prentice-Hall, Englewood Cliffs, N. J. 1984 Zbl0653.93001
- Greshak J. P., Vergese G. C., 10.1016/S0167-6911(82)80016-9, Systems Control Lett. 2 (1982), 88–93 (1982) MR0671861DOI10.1016/S0167-6911(82)80016-9
- Guidorzi R., 10.1016/0005-1098(75)90085-0, Automatica 11 (1975), 361–374 (1975) Zbl0309.93012MR0444226DOI10.1016/0005-1098(75)90085-0
- Hagiwara T., Araki M., 10.1109/9.1309, IEEE Trans. Automat. Control AC-33 (1988), 812–819 (1988) Zbl0648.93043MR0953875DOI10.1109/9.1309
- Ho B. L., Kalman R. E., Effective construction of linear state variable models from input/output functions, In: Proc. 3rd Allerton Conference, pp. 449–459; Regelungstechnik 14 (1966), 545–548 (1966) Zbl0145.12701MR0245360
- Kabamba P. T., 10.1109/TAC.1987.1104711, IEEE Trans. Automat. Control AC-32 (1987), 772–783 (1987) Zbl0627.93049MR0902487DOI10.1109/TAC.1987.1104711
- Kabamba P. T., Yang C., 10.1109/9.62275, IEEE Trans. Automat. Control 36 (1991), 106–111 (1991) Zbl0745.93046MR1084253DOI10.1109/9.62275
- Kalman R. E., Ho Y. C., Narendra K. S., Controllability of linear dynamical systems, Contrib. Diff. Equations 1 (1972), 189-213, 1962 (1972) MR0155070
- Khargonekar P. P., Poola K., Tannenbaum A., 10.1109/TAC.1985.1103841, IEEE Trans. Automat. Control AC-30 (1985), 1088–1096 (1985) MR0810310DOI10.1109/TAC.1985.1103841
- Kinnaert M., Blondel V., 10.1016/0005-1098(92)90146-7, Automatica 28 (1992), 935–943 (1992) Zbl0766.93022MR1179696DOI10.1016/0005-1098(92)90146-7
- Kim J.-H., Hong Y.-C., Choi K.-K., 10.1109/9.83541, IEEE Trans. Automat. Control AC-36 (1991), 1073–1077 (1991) Zbl0754.93028MR1122486DOI10.1109/9.83541
- Lozano-Leal R., 10.1109/9.40771, IEEE Trans. Automat. Control AC-34 (1989), 1260–1267 (1989) Zbl0689.93038MR1029376DOI10.1109/9.40771
- Lozano-Leal R., Goodwin G. C., 10.1109/TAC.1985.1104036, IEEE Trans. Automat. Control AC-30 (1985), 795-798 (1985) MR0794220DOI10.1109/TAC.1985.1104036
- McElveen J. K., Lee K. R., Bennett J. E., 10.1109/41.141619, IEEE Trans. Ind. Electr. 39 (1992), 189–193 (1992) DOI10.1109/41.141619
- Mita T., Pang B. C., Liu K. Z., 10.1080/00207178708933868, Internat. J. Control 45 (1987), 2071–2082 (1987) Zbl0616.93051MR0891798DOI10.1080/00207178708933868
- Mo L., Bayoumi M. M., 10.1109/9.16435, IEEE Trans. Automat. Control AC-34 (1989), 359–363 (1989) Zbl0666.93083MR0980373DOI10.1109/9.16435
- Paraskevopoulos P. N., Arvanitis K. G., 10.1016/0005-1098(94)90127-9, Automatica 30 (1994), 503–506 (1994) Zbl0800.93329MR1268953DOI10.1016/0005-1098(94)90127-9
- Sastry S., Bodson M., Adaptive Control: Stability, Convergence and Robustness, Prentice–Hall, Englewood Cliffs, N. J. 1989 Zbl0721.93046
- Silverman L. M., 10.1109/TAC.1971.1099821, IEEE Trans. Automat. Control AC-16 (1971), 554–567 (1971) MR0307749DOI10.1109/TAC.1971.1099821
- Wellstead P. E., Edmunds J. M., Prager D., Zanker P., 10.1080/00207177908922754, Internat. J. Control 30 (1979), 1–26 (1979) Zbl0422.93096DOI10.1080/00207177908922754
- Youla D. C., Bongiorno J. J., Jr., Lu C. N., 10.1016/0005-1098(74)90021-1, Automatica 10 (1974), 159–173 (1974) MR0490293DOI10.1016/0005-1098(74)90021-1
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.