Transfer function computation for 3-D discrete systems
Kybernetika (2000)
- Volume: 36, Issue: 5, page [539]-547
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topAntoniou, George E.. "Transfer function computation for 3-D discrete systems." Kybernetika 36.5 (2000): [539]-547. <http://eudml.org/doc/33501>.
@article{Antoniou2000,
abstract = {A theoretically attractive and computationally fast algorithm is presented for the determination of the coefficients of the determinantal polynomial and the coefficients of the adjoint polynomial matrix of a given three-dimensional (3–D) state space model of Fornasini–Marchesini type. The algorithm uses the discrete Fourier transform (DFT) and can be easily implemented on a digital computer.},
author = {Antoniou, George E.},
journal = {Kybernetika},
keywords = {3-D discrete system; discrete Fourier transform; 3-D discrete system; discrete Fourier transform},
language = {eng},
number = {5},
pages = {[539]-547},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Transfer function computation for 3-D discrete systems},
url = {http://eudml.org/doc/33501},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Antoniou, George E.
TI - Transfer function computation for 3-D discrete systems
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 5
SP - [539]
EP - 547
AB - A theoretically attractive and computationally fast algorithm is presented for the determination of the coefficients of the determinantal polynomial and the coefficients of the adjoint polynomial matrix of a given three-dimensional (3–D) state space model of Fornasini–Marchesini type. The algorithm uses the discrete Fourier transform (DFT) and can be easily implemented on a digital computer.
LA - eng
KW - 3-D discrete system; discrete Fourier transform; 3-D discrete system; discrete Fourier transform
UR - http://eudml.org/doc/33501
ER -
References
top- Antoniou G. E., Glentis G. O. A., Varoufakis S. J., Karras D. A., 10.1109/31.192429, IEEE Trans. Circuits and Systems CAS-36 (1989), 1140–1142 (1989) MR1003246DOI10.1109/31.192429
- Bose N. K., Applied Multidimensional Systems, Van Nostrand, Reinhold, 1982 Zbl0574.93031MR0652483
- Fornasini E., Marchesini E., 10.1007/BF01776566, Math. Systems Theory 12 (1978), 1, 59–72 (1978) Zbl0392.93034MR0510621DOI10.1007/BF01776566
- Galkowski K., State Space Realizations on -D Systems, Monograph No. 76, Wroclaw Technical University, Wroclaw 1994
- Kaczorek T., Two dimensional linear systems, (Lecture Notes in Control and Informations Sciences 68.) Springer–Verlag, Berlin 1985 Zbl0904.00029MR0870854
- Luo H., Lu W.-S., Antoniou A., New algorithms for the derivation of the transfer-function matrices of 2-D state-space discrete systems, I: Fundamental theory and applications. IEEE Trans. Circuits and Systems CAS-44 (1997), 2, 112–119 (1997) Zbl0873.93006
- Oppenheim A. V., Scheafer R. W., Digital Signal Processing, Prentice–Hall, Englewood Cliffs, N. J. 1975
- al L. E. Paccagnella et, 10.1109/TAC.1976.1101226, IEEE Trans. Automat. Control AC-21 (1976), 401 (1976) DOI10.1109/TAC.1976.1101226
- Paraskevopoulos P. N., Varoufakis S. J., Antoniou G. E., Minimal state space realization of 3–D systems, IEE Proceedings Part G 135 (1988), 65–70 (1988)
- Yeung K. S., Kumbi F., 10.1109/31.1727, IEEE Trans. Circuits and Systems CAS-35 (1988), 2, 235–239 (1988) Zbl0643.65013DOI10.1109/31.1727
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.