Asymptotic distribution of the conditional regret risk for selecting good exponential populations
Shanti S. Gupta; Friedrich Liese
Kybernetika (2000)
- Volume: 36, Issue: 5, page [571]-588
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Balakrishnan N., (eds.) A. P. Basu, The Exponential Distribution: Theory, Method and Applications, Gordon and Breach Publishers. Langliorne, Pennsylvania 1995 MR1655093
- Deely J. J., Multiple Decision Procedures from Empirical Bayes Approach, Ph.D. Thesis (Mimeo. Ser. No. 45). Dept. Statist., Purdue Univ., West Lafayette, Ind. 1965 MR2615366
- Dvoretzky A., Kiefer, J., Wolfowitz J., 10.1214/aoms/1177728174, Ann. Math. Statist. 27 (1956), 642–669 (1956) MR0083864DOI10.1214/aoms/1177728174
- Gupta S. S., Panchapakesan S., Subset selection procedures: review and assessment, Amer. J. Management Math. Sci. 5 (1985), 235–311 (1985) Zbl0633.62024MR0859941
- Gupta S. S., Liang T., Empirical Bayes rules for selecting the best binomial population, In: Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.), Vol. 1. Springer–Verlag, Berlin 1986, pp. 213–224 (1986) MR0927102
- Gupta S. S., Liang T., 10.1016/0378-3758(92)00154-V, J. Statist. Plann. Inference 38 (1994), 43–64 (1994) Zbl0797.62004MR1256847DOI10.1016/0378-3758(92)00154-V
- Gupta S. S., Liang, T., Rau R.-B., Empirical Bayes two stage procedures for selecting the best Bernoulli population compared with a control, In: Statistical Decision Theory and Related Topics V. (S. S. Gupta and J. O. Berger, eds.), Springer–Verlag, Berlin 1994, pp. 277–292 (1994) Zbl0788.62010MR1286308
- Gupta S. S., Liang, T., Rau R.-B., Empirical Bayes rules for selecting the best normal population compared with a control, Statist. Decision 12 (1994), 125–147 (1994) Zbl0804.62009MR1292660
- Gupta S. S., Liang T., Selecting good exponential populations compared with a control: nonparametric empirical Bayes approach, Sankhya, Ser. B 61 (1999), 289–304 (1999) MR1734172
- Ibragimov I. A., Has’minskii R. Z., Statistical Estimation: Asymptotic Theory, Springer, New York 1981 MR0620321
- Johnson N. L., Kotz S., Balakrishnan N., Continuous Univariate Distributions, Vol, 1. Second edition. Wiley, New York 1994 Zbl0821.62001MR1299979
- Jurečková J., Sen P. K., Robust Statistical Procedures, Asymptotics and Interrelations, Wiley, New York 1996 Zbl0862.62032MR1387346
- Liese F., Vajda I., 10.1006/jmva.1994.1036, J. Multivariate Anal. 50 (1994), 93–114 (1994) Zbl0872.62071MR1292610DOI10.1006/jmva.1994.1036
- Pfanzagl J., 10.1007/BF02613654, Metrika 14 (1969), 249–272 (1969) DOI10.1007/BF02613654
- Pollard D., 10.1017/S0266466600004394, Econometric Theory 7 (1991), 186–199 (1991) MR1128411DOI10.1017/S0266466600004394
- Robbins H., An empirical Bayes approach to statistics, In: Proc. Third Berkeley Symp., Math. Statist. Probab. 1, Univ. of California Press 1956, pp. 157–163 (1956) Zbl0074.35302MR0084919
- Shorack G. R., Wellner J. A., Empirical Processes with Applications to Statistics, Wiley, New York 1986 Zbl1171.62057MR0838963
- Wald A., 10.1214/aoms/1177729952, Ann. Math. Statist. 20 (1949), 595–601 (1949) Zbl0034.22902MR0032169DOI10.1214/aoms/1177729952
- Vaart A. W. van der, Wellner J. A., Weak Convergence and Empirical Processes (Springer Series in Statistics), Springer–Verlag, Berlin 1996 MR1385671