Asymptotic distribution of the conditional regret risk for selecting good exponential populations
Shanti S. Gupta; Friedrich Liese
Kybernetika (2000)
- Volume: 36, Issue: 5, page [571]-588
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGupta, Shanti S., and Liese, Friedrich. "Asymptotic distribution of the conditional regret risk for selecting good exponential populations." Kybernetika 36.5 (2000): [571]-588. <http://eudml.org/doc/33503>.
@article{Gupta2000,
abstract = {In this paper empirical Bayes methods are applied to construct selection rules for the selection of all good exponential distributions. We modify the selection rule introduced and studied by Gupta and Liang [10] who proved that the regret risk converges to zero with rate $O(n^\{-\lambda /2\}),0<\lambda \le 2$. The aim of this paper is to study the asymptotic behavior of the conditional regret risk $\{\mathcal \{R\}\}_\{n\}$. It is shown that $n\{\mathcal \{R\}\}_\{n\}$ tends in distribution to a linear combination of independent $\chi ^\{2\}$-distributed random variables. As an application we give a large sample approximation for the probability that the conditional regret risk exceeds the Bayes risk by a given $\varepsilon >0.$ This probability characterizes the information contained in the historical data.},
author = {Gupta, Shanti S., Liese, Friedrich},
journal = {Kybernetika},
keywords = {Bayes method},
language = {eng},
number = {5},
pages = {[571]-588},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Asymptotic distribution of the conditional regret risk for selecting good exponential populations},
url = {http://eudml.org/doc/33503},
volume = {36},
year = {2000},
}
TY - JOUR
AU - Gupta, Shanti S.
AU - Liese, Friedrich
TI - Asymptotic distribution of the conditional regret risk for selecting good exponential populations
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 5
SP - [571]
EP - 588
AB - In this paper empirical Bayes methods are applied to construct selection rules for the selection of all good exponential distributions. We modify the selection rule introduced and studied by Gupta and Liang [10] who proved that the regret risk converges to zero with rate $O(n^{-\lambda /2}),0<\lambda \le 2$. The aim of this paper is to study the asymptotic behavior of the conditional regret risk ${\mathcal {R}}_{n}$. It is shown that $n{\mathcal {R}}_{n}$ tends in distribution to a linear combination of independent $\chi ^{2}$-distributed random variables. As an application we give a large sample approximation for the probability that the conditional regret risk exceeds the Bayes risk by a given $\varepsilon >0.$ This probability characterizes the information contained in the historical data.
LA - eng
KW - Bayes method
UR - http://eudml.org/doc/33503
ER -
References
top- Balakrishnan N., (eds.) A. P. Basu, The Exponential Distribution: Theory, Method and Applications, Gordon and Breach Publishers. Langliorne, Pennsylvania 1995 MR1655093
- Deely J. J., Multiple Decision Procedures from Empirical Bayes Approach, Ph.D. Thesis (Mimeo. Ser. No. 45). Dept. Statist., Purdue Univ., West Lafayette, Ind. 1965 MR2615366
- Dvoretzky A., Kiefer, J., Wolfowitz J., 10.1214/aoms/1177728174, Ann. Math. Statist. 27 (1956), 642–669 (1956) MR0083864DOI10.1214/aoms/1177728174
- Gupta S. S., Panchapakesan S., Subset selection procedures: review and assessment, Amer. J. Management Math. Sci. 5 (1985), 235–311 (1985) Zbl0633.62024MR0859941
- Gupta S. S., Liang T., Empirical Bayes rules for selecting the best binomial population, In: Statistical Decision Theory and Related Topics IV (S. S. Gupta and J. O. Berger, eds.), Vol. 1. Springer–Verlag, Berlin 1986, pp. 213–224 (1986) MR0927102
- Gupta S. S., Liang T., 10.1016/0378-3758(92)00154-V, J. Statist. Plann. Inference 38 (1994), 43–64 (1994) Zbl0797.62004MR1256847DOI10.1016/0378-3758(92)00154-V
- Gupta S. S., Liang, T., Rau R.-B., Empirical Bayes two stage procedures for selecting the best Bernoulli population compared with a control, In: Statistical Decision Theory and Related Topics V. (S. S. Gupta and J. O. Berger, eds.), Springer–Verlag, Berlin 1994, pp. 277–292 (1994) Zbl0788.62010MR1286308
- Gupta S. S., Liang, T., Rau R.-B., Empirical Bayes rules for selecting the best normal population compared with a control, Statist. Decision 12 (1994), 125–147 (1994) Zbl0804.62009MR1292660
- Gupta S. S., Liang T., Selecting good exponential populations compared with a control: nonparametric empirical Bayes approach, Sankhya, Ser. B 61 (1999), 289–304 (1999) MR1734172
- Ibragimov I. A., Has’minskii R. Z., Statistical Estimation: Asymptotic Theory, Springer, New York 1981 MR0620321
- Johnson N. L., Kotz S., Balakrishnan N., Continuous Univariate Distributions, Vol, 1. Second edition. Wiley, New York 1994 Zbl0821.62001MR1299979
- Jurečková J., Sen P. K., Robust Statistical Procedures, Asymptotics and Interrelations, Wiley, New York 1996 Zbl0862.62032MR1387346
- Liese F., Vajda I., 10.1006/jmva.1994.1036, J. Multivariate Anal. 50 (1994), 93–114 (1994) Zbl0872.62071MR1292610DOI10.1006/jmva.1994.1036
- Pfanzagl J., 10.1007/BF02613654, Metrika 14 (1969), 249–272 (1969) DOI10.1007/BF02613654
- Pollard D., 10.1017/S0266466600004394, Econometric Theory 7 (1991), 186–199 (1991) MR1128411DOI10.1017/S0266466600004394
- Robbins H., An empirical Bayes approach to statistics, In: Proc. Third Berkeley Symp., Math. Statist. Probab. 1, Univ. of California Press 1956, pp. 157–163 (1956) Zbl0074.35302MR0084919
- Shorack G. R., Wellner J. A., Empirical Processes with Applications to Statistics, Wiley, New York 1986 Zbl1171.62057MR0838963
- Wald A., 10.1214/aoms/1177729952, Ann. Math. Statist. 20 (1949), 595–601 (1949) Zbl0034.22902MR0032169DOI10.1214/aoms/1177729952
- Vaart A. W. van der, Wellner J. A., Weak Convergence and Empirical Processes (Springer Series in Statistics), Springer–Verlag, Berlin 1996 MR1385671
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.