Fuzzy decision trees to help flexible querying

Christophe Marsala

Kybernetika (2000)

  • Volume: 36, Issue: 6, page [689]-705
  • ISSN: 0023-5954

Abstract

top
Fuzzy data mining by means of the fuzzy decision tree method enables the construction of a set of fuzzy rules. Such a rule set can be associated with a database as a knowledge base that can be used to help answering frequent queries. In this paper, a study is done that enables us to show that classification by means of a fuzzy decision tree is equivalent to the generalized modus ponens. Moreover, it is shown that the decision taken by means of a fuzzy decision tree is more stable when observation evolves.

How to cite

top

Marsala, Christophe. "Fuzzy decision trees to help flexible querying." Kybernetika 36.6 (2000): [689]-705. <http://eudml.org/doc/33511>.

@article{Marsala2000,
abstract = {Fuzzy data mining by means of the fuzzy decision tree method enables the construction of a set of fuzzy rules. Such a rule set can be associated with a database as a knowledge base that can be used to help answering frequent queries. In this paper, a study is done that enables us to show that classification by means of a fuzzy decision tree is equivalent to the generalized modus ponens. Moreover, it is shown that the decision taken by means of a fuzzy decision tree is more stable when observation evolves.},
author = {Marsala, Christophe},
journal = {Kybernetika},
keywords = {fuzzy data mining; fuzzy decision trees; fuzzy data mining; fuzzy decision trees},
language = {eng},
number = {6},
pages = {[689]-705},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Fuzzy decision trees to help flexible querying},
url = {http://eudml.org/doc/33511},
volume = {36},
year = {2000},
}

TY - JOUR
AU - Marsala, Christophe
TI - Fuzzy decision trees to help flexible querying
JO - Kybernetika
PY - 2000
PB - Institute of Information Theory and Automation AS CR
VL - 36
IS - 6
SP - [689]
EP - 705
AB - Fuzzy data mining by means of the fuzzy decision tree method enables the construction of a set of fuzzy rules. Such a rule set can be associated with a database as a knowledge base that can be used to help answering frequent queries. In this paper, a study is done that enables us to show that classification by means of a fuzzy decision tree is equivalent to the generalized modus ponens. Moreover, it is shown that the decision taken by means of a fuzzy decision tree is more stable when observation evolves.
LA - eng
KW - fuzzy data mining; fuzzy decision trees; fuzzy data mining; fuzzy decision trees
UR - http://eudml.org/doc/33511
ER -

References

top
  1. Agrawal R., Imielinski, T., Swami A., Mining association rules between sets of items in large databases, In: Proc. ACM-SIGMOD Internat. Conference on Management of Data, Washington DC 1993, pp. 207–216 (1993) 
  2. Agrawal R., Imielinski, T., Swami A., 10.1109/69.250074, IEEE Trans. on Knowledge and Data Engineering 5 (1993), 6, 914–925 (1993) DOI10.1109/69.250074
  3. Bouchon–Meunier B., La logique floue et ses applications, Collection Vie Artificielle. Addison Wesley France, 1995 
  4. Bouchon–Meunier B., Rifqi, M., Bothorel S., 10.1016/0165-0114(96)00067-X, Fuzzy Sets and Systems 84 (1996), 2, 143–153 (1996) Zbl0917.94028MR1416692DOI10.1016/0165-0114(96)00067-X
  5. Bouchon–Meunier B., Marsala, C., Ramdani M., Learning from imperfect data, In: Fuzzy Information Engineering: a Guided Tour of Applications (D. Dubois, H. Prade, and R. R. Yager, eds.), Wiley, New York 1997, pp. 139–148 (1997) 
  6. Bouchon–Meunier B., Marsala C., Learning fuzzy decision rules, In: Fuzzy Sets in Approximate Reasoning and Information Systems, volume 3 of Handbook of Fuzzy Sets, chapter 4 (D. Dubois J. Bezdek and H. Prade, eds.), Kluwer, Dordrecht 1999 Zbl0952.68124MR1799005
  7. Chen, I-M. A., Query answering using discovered rules, In: Proc. 12th Internat. Conference on Data Engineering (S. Y. W. Su, ed.), IEEE Computer Society Press, New Orleans 1996, pp. 402–411 (1996) 
  8. Cios K. J., Pedrycz, W., Swiniarski R. W., Data Mining – Methods for Knowledge Discovery, (Engineering and Computer Science.) Kluwer, Dordrecht 1998 Zbl0912.68199
  9. Driankov D., Hellendoorn, H., Reinfrank M., An Introduction to Fuzzy Control, Springer Verlag, Berlin 1993 Zbl0851.93001
  10. Dubois D., Prade H., A unifying view of comparison indices in a fuzzy set-theoretic framework, In: Fuzzy Set and Possibility Theory (R. R. Yager, ed.), Pergamon Press 1982, pp. 3–13 (1982) 
  11. Dubois D., Prade, H., Testemale C., 10.1016/0165-0114(88)90038-3, Fuzzy Sets and Systems 28 (1988), 3, 313–331 (1988) Zbl0658.94026MR0976671DOI10.1016/0165-0114(88)90038-3
  12. Dubois D., Mo, X., Prade H., Fuzzy-valued variables and fuzzy discrimination trees in pattern-directed inference, In: Eighth International Congress of Cybernetics and Systems, New York 1990 
  13. Dubois D., Mo, X., Prade H., Fuzzy discrimination trees, In: Fuzzy Engineering toward Human Friendly Systems. Proc. Internat. Fuzzy Engineering Symposium IFES’91, volume 1, Yokohama 1991, pp. 250–260 (1991) MR1221133
  14. Fayyad U. M., Piatetsky–Shapiro, G., Smyth P., From data mining to knowledge discovery in databases, AI Magazine 17 (1996), 3, 37–54 (1996) 
  15. Hu X., Cercone N., Mining knowledge rules from databases: A rough set approach, In: Proc. 12th Internat. Conference on Data Engineering (S. Y. W. Su, ed.), IEEE Computer Society Press, New Orleans 1996, pp. 96–105 (1996) 
  16. Lent B., Swami, A., Widom J., Clustering association rules, In: Proc. 13th Internat. Conference on Data Engineering, IEEE Computer Society Press, Birmingham 1997, pp. 220–231 (1997) 
  17. Marsala C., Bouchon-Meunier B., Fuzzy partioning using mathematical morphology in a learning scheme, In: Proc. 5th IEEE Internat. Conference on Fuzzy Systems, volume 2, New Orleans 1996, pp. 1512–1517 (1996) 
  18. Marsala C., Apprentissage inductif en présence de données imprécises: construction et utilisation d’arbres de décision flous, PhD Thesis, Université Pierre et Marie Curie, Paris 1998 
  19. Marsala C., Application of fuzzy rule induction to data mining, In: Proc. 3rd Internat. Conference FQAS’98 – LNAI 1495 (T. Andreasen, H. Christiansen, and H. L. Larsen, eds.), Springers, Roskilde 1998, pp. 260–271 (1998) 
  20. Marsala C., Ramdani M., Toullabi, M., Zakaria D., Fuzzy decision trees applied to the recognition of odors, In: Proc. IPMU’98 Conference, volume 1, Editions EDK, Paris 1998, pp. 532–539 (1998) 
  21. Marsala C., Bigolin N. Martini, Spatial data mining with fuzzy decision trees, In: Proc. Internat. Conference on Data Mining (N. F. F. Ebecken, ed.), WIT Press, Rio de Janeiro 1998, pp. 235–248 (1998) 
  22. Marsala C., Bouchon–Meunier B., An adaptable system to construct fuzzy decision trees, In: Proc. NAFIPS’99 (North American Fuzzy Information Processing Society), New York 1999, pp. 223–227 (1999) 
  23. Marsala C., Bouchon–Meunier, B., Ramer A., Hierarchical model for discrimination measures, In: Proc. IFSA’99 World Congress, Taiwan 1999, pp. 339–343 (1999) 
  24. Mo X., Compilation de bases de connaissances avec prise en compte de l’imprécision et de l’incertitude, PhD Thesis, Université Paul Sabatier, Toulouse 1990 
  25. Nguyen H. T., Kreinovitch, V., Tolbert D., On robustness of fuzzy logics, In: Proc. FUZZ-IEEE Internat. Conference, volume 1, San Francisco 1993, pp. 543–547 (1993) 
  26. Nguyen H. T., Kreinovitch, V., Tolbert D., 10.1142/S0218488594000304, Internat. J. of Uncertainty, Fuzziness and Knowledge-Based Systems 2 (1994), 4, 361–375 (1994) MR1309606DOI10.1142/S0218488594000304
  27. Pedrycz, Yubazaki, Ohtani,, Hirota, Robustness and sensitivity in fuzzy computational structures, In: Proc. IFSA’91 Conference, Brussels 1991, pp. 197–200 (1991) 
  28. Py J.-J., Éléments d’étude de la sensibilité des modèles flous, Université Paris IX, 1997 
  29. Quinlan J. R., 10.1007/BF00116251, Machine Learning 1 (1986), 1, 86–106 (1986) DOI10.1007/BF00116251
  30. Quinlan J. R., Improved use of continuous attributes in C4, 5. J. Artificial Intelligence Research 4 (1996), 3, 77–90 (1996) Zbl0900.68112
  31. Ramdani M., Système d’Induction Formelle à Base de Connaissances Imprécises, PhD Thesis, Université P. et M. Curie, Paris 1994 
  32. Rifqi M., Mesures de comparaison, typicalité et classification d’objets flous : théorie et pratique, PhD Thesis, Université P. et M. Curie, Paris 1996 
  33. Shekhar S., Hamidzadeh B., Kohli, A., Coyle M., 10.1109/69.250077, IEEE Trans. on Knowledge and Data Engineering 5 (1993), 6, 950–964 (1993) DOI10.1109/69.250077
  34. Zadeh L. A., 10.1016/0020-0255(75)90017-1, Inform. Sci. 9 (1976), 43–80 (1976) MR0386371DOI10.1016/0020-0255(75)90017-1
  35. Zadeh L. A., The role of fuzzy logic in the management of uncertainty in expert systems, Fuzzy Sets and Systems 11 (1983), 199–227.Reprinted in: Fuzzy Sets and Applications: selected papers by L. A. Zadeh (R. R. Yager, S. Ovchinnikov, R. M. Tong and H. T. Nguyen, eds.), pp. 413–441 (1983) Zbl0553.68049MR0727205

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.