Static output feedback controller design
Kybernetika (2001)
- Volume: 37, Issue: 2, page [205]-221
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topVeselý, Vojtech. "Static output feedback controller design." Kybernetika 37.2 (2001): [205]-221. <http://eudml.org/doc/33528>.
@article{Veselý2001,
abstract = {In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback gain matrix, including a decentralized one, can be prescribed by the designer. In this way the decentralized output feedback controller can be designed.},
author = {Veselý, Vojtech},
journal = {Kybernetika},
keywords = {output feedback controller; LMI based algorithm; output feedback controller; LMI based algorithm},
language = {eng},
number = {2},
pages = {[205]-221},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Static output feedback controller design},
url = {http://eudml.org/doc/33528},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Veselý, Vojtech
TI - Static output feedback controller design
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 2
SP - [205]
EP - 221
AB - In this paper new necessary and sufficient conditions for static output feedback stabilizability for continuous and discrete time linear time invariant systems have been proposed. These conditions form the basis for the procedure of static output feedback controller design proposed in this paper. The proposed LMI based algorithms are computationally simple and tightly connected with the Lyapunov stability theory and LQ optimal state feedback design. The structure of the output feedback gain matrix, including a decentralized one, can be prescribed by the designer. In this way the decentralized output feedback controller can be designed.
LA - eng
KW - output feedback controller; LMI based algorithm; output feedback controller; LMI based algorithm
UR - http://eudml.org/doc/33528
ER -
References
top- Benton I. E., Smith D., 10.1080/002071799220290, Internat. J. Control 72 (1999), 14, 1322–1330 (1999) Zbl0960.93048MR1712166DOI10.1080/002071799220290
- Boyd S., Ghaoui L. El, Feron E., Balakrishnam V., Linear matrix inequalities in system and control theory, SIAM 15 (1994), Philadelphia (1994) MR1284712
- Blondel V., Gevers M., Lindquist A., 10.1016/S0947-3580(95)70004-8, European J. Control 1 (1995), 5, 2–23 (1995) Zbl1177.93001DOI10.1016/S0947-3580(95)70004-8
- Ghaoui L. El, Balakrishnan V., Synthesis of fixed structure controllers via numerical optimization, In: Proc. of the 33rd Conference on Decision and Control, Lake Buena Vista 1994, pp. 2678–2683 (1994)
- Geromel J. C., Peres P. L. D., Decentralized load-frequency control, Proc. IEE–D 132 (1985), 225–230 (1985)
- Goh K. C., Safonov M. G., Ly J. H., 10.1002/(SICI)1099-1239(199611)6:9/10<1079::AID-RNC270>3.0.CO;2-#, Internat. J. Robust and Nonlinear Control 6 (1996), 1079–1095 (1996) Zbl0861.93015MR1429443DOI10.1002/(SICI)1099-1239(199611)6:9/10<1079::AID-RNC270>3.0.CO;2-#
- Goh K. G., Safonov M. G., Papavassilopoulos G. P., 10.1007/BF01099648, J. Global Optimization 7 (1995), 365–380 (1995) Zbl0844.90083MR1365801DOI10.1007/BF01099648
- Iwasaki T., Skelton R. L., Geromel J. G., 10.1016/0167-6911(94)90096-5, Systems Control Lett. 23 (1994), 421–430 (1994) Zbl0873.49021MR1304473DOI10.1016/0167-6911(94)90096-5
- Iwasaki T., Skelton R. E., All controllers for the general control problem: LMI existence conditions and state space formulas, Automatica 30 (1994), 8, 1307–1314 (1994) MR1288621
- Kose I. E., Jabbari F., 10.1016/S0005-1098(98)00184-8, Automatica 35 (1999), 679–687 (1999) Zbl0982.93033MR1827393DOI10.1016/S0005-1098(98)00184-8
- Kučera V., deSouza C. E., 10.1016/0005-1098(95)00048-2, Automatica 31 (1995), 9, 1357–1359 (1995) MR1349414DOI10.1016/0005-1098(95)00048-2
- Lankaster P., Theory of Matrices, Academic Press, New York – London 1969 MR0245579
- Yu, Li, Chu, Jian, 10.1016/S0005-1098(99)00007-2, Automatica 35 (1999), 1155–1159 (1999) Zbl1041.93530MR1831625DOI10.1016/S0005-1098(99)00007-2
- Rosinová D., Veselý V., Kučera V., A necessary and sufficient condition for output feedback stabilizability of linear discrete-time systems, In: IFAC Conference Control System Design, Bratislava 2000, pp. 164–167
- Safonov M. G., Goh K. G., Ly J., Control system synthesis via bilinear matrix inequalities, In: Proc. American Control Conf., Baltimore 1994, IEEE Press, New York, pp. 1–5 (1994)
- Syrmos V. L., Abdalah C. T., Dorato P., Grigoriadis K., 10.1016/S0005-1098(96)00141-0, Automatica 33 (1997), 2, 125–137 (1997) MR1436056DOI10.1016/S0005-1098(96)00141-0
- Toker O., Özbay H., On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback, In: Proc. ACC 1995, pp. 2525–2526 (1995)
- Gao, Yong-Yan, Sun, You-Xian, 10.1080/002071798222145, Internat. J. Control 70 (1998), 5, 803–814 (1998) MR1634668DOI10.1080/002071798222145
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.