On a class of linear delay systems often arising in practice

Michel Fliess; Hugues Mounier

Kybernetika (2001)

  • Volume: 37, Issue: 3, page [295]-308
  • ISSN: 0023-5954

Abstract

top
We study the tracking control of linear delay systems. It is based on an algebraic property named π -freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.

How to cite

top

Fliess, Michel, and Mounier, Hugues. "On a class of linear delay systems often arising in practice." Kybernetika 37.3 (2001): [295]-308. <http://eudml.org/doc/33536>.

@article{Fliess2001,
abstract = {We study the tracking control of linear delay systems. It is based on an algebraic property named $\pi $-freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.},
author = {Fliess, Michel, Mounier, Hugues},
journal = {Kybernetika},
keywords = {delay system; $\pi $-freeness; tracking control; Kalman’s finite dimensional linear controllability; finite dimensional nonlinear flat systems; delay system; -freeness; tracking control; Kalman's finite dimensional linear controllability; finite dimensional nonlinear flat systems},
language = {eng},
number = {3},
pages = {[295]-308},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On a class of linear delay systems often arising in practice},
url = {http://eudml.org/doc/33536},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Fliess, Michel
AU - Mounier, Hugues
TI - On a class of linear delay systems often arising in practice
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 3
SP - [295]
EP - 308
AB - We study the tracking control of linear delay systems. It is based on an algebraic property named $\pi $-freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.
LA - eng
KW - delay system; $\pi $-freeness; tracking control; Kalman’s finite dimensional linear controllability; finite dimensional nonlinear flat systems; delay system; -freeness; tracking control; Kalman's finite dimensional linear controllability; finite dimensional nonlinear flat systems
UR - http://eudml.org/doc/33536
ER -

References

top
  1. Artstein Z., 10.1109/TAC.1982.1103023, IEEE Trans. Automat. Control 27 (1982), 869–879 (1982) MR0680488DOI10.1109/TAC.1982.1103023
  2. Bensoussan A., Prato G. Da, Delfour M. C., Mitter S. K., Representation and Control of Infinite Dimensional Systems, vol, 1 & 2. Birkhäuser, Boston 1992 & 1993 (1992) MR1182557
  3. Brethé D., Loiseau J. J., A result that could bear fruit for the control of delay-differential systems, In: Proc. IEEE MSCA’96. Chania 1996 
  4. Bhat K., Koivo H., 10.1109/TAC.1976.1101165, IEEE Trans. Automat. Control 21 (1976), 292–293 (1976) MR0424297DOI10.1109/TAC.1976.1101165
  5. Byrnes C. I., Spong, M., Tarn T. J., 10.1007/BF01744436, Math. Systems Theory 17 (1984), 97–133 (1984) Zbl0539.93064MR0739983DOI10.1007/BF01744436
  6. Drakunov S., Özgüner U., Generalized sliding modes for manifold control of distributed parameter systems, In: Variable Structure and Lyapounov Control (A. S. Zinober, ed., Lecture Notes in Control and Information Sciences 193), Springer, London 1994, pp. 109–129 (193)) 
  7. Fliess M., 10.1016/0167-6911(90)90062-Y, Systems Control Lett. 15 (1990), 391–396 (1990) Zbl0727.93024MR1084580DOI10.1016/0167-6911(90)90062-Y
  8. Fliess M., 10.1016/0167-6911(92)90038-T, Systems Control Lett. 19 (1992), 43–45 (1992) Zbl0765.93003MR1170986DOI10.1016/0167-6911(92)90038-T
  9. Fliess M., Une interprétation algébrique de la transformation de Laplace et des matrices de transfert, Linear Algebra Appl. 203–204 (1994), 429–442 (1994) Zbl0802.93010MR1275520
  10. Fliess M., Variations sur la notion de commandabilité, In: Quelques aspects de la théorie du contrôle. Proc. Journée annuelle Soc. Math. France, Paris 2000, pp. 47–86 MR1799559
  11. Fliess M., Bourlès H., 10.1016/0167-6911(95)00029-1, System Control Lett. 27 (1996), 1–7 (1996) Zbl0877.93064MR1375906DOI10.1016/0167-6911(95)00029-1
  12. Fliess M., Lévine J., Martin, P., Rouchon P., 10.1080/00207179508921959, Internat. J. Control 61 (1995), 1327–1361 (1995) MR1613557DOI10.1080/00207179508921959
  13. Fliess M., Lévine J., Martin, P., Rouchon P., 10.1109/9.763209, IEEE Trans. Automat. Control 44 (1999), 922–937 (1999) Zbl0964.93028MR1690537DOI10.1109/9.763209
  14. Fliess M., Mounier H., Quasi-finite linear delay systems: theory and applications, In: Proc. IFAC Workshop Linear Time Delay Systems, Grenoble 1998, pp. 211–215 (1998) 
  15. Fliess M., Marquez, R., Mounier H., PID like regulators for a class of linear delay systems, In: Proc. European Control Conference, Porto 2001 
  16. Fliess M., Marquez, R., Mounier H., An extension of predictive control, PID regulators and Smith predictors to some linear delay systems, Internat. J. Control. Submitted Zbl1021.93015MR1916231
  17. Kalman R. E., Falb, L., Arbib M. A., Topics in Mathematical System Theory, McGraw–Hill, New York 1969 Zbl0231.49002MR0255260
  18. Lam T. Y., Serre’s Conjecture, Springer, Berlin 1978 Zbl0373.13004MR0485842
  19. Lang S., Algebra, Third edition. Addison–Wesley, Reading, MA 1993 Zbl1063.00002
  20. Manitius A. J., Olbrot A. W., 10.1109/TAC.1979.1102124, IEEE Trans. Automat. Control 24 (1979), 541–553 (1979) Zbl0425.93029MR0538808DOI10.1109/TAC.1979.1102124
  21. Marshall J., Górecki H., Korytowski, A., Walton K., Time Delay Systems Stability and Performance Criteria with Applications, Ellis Horwood, New York 1992 Zbl0769.93001
  22. Martin P., Murray R. M., Rouchon P., Flat systems, In: Plenary Lectures and Mini–Courses, ECC 97 (G. Bastin and M. Gevers, eds.), Brussels 1997, pp. 211–264 (1997) 
  23. Morse A. S., 10.1016/0005-1098(76)90013-3, Automatica 12 (1976), 529–531 (1976) Zbl0345.93023MR0437162DOI10.1016/0005-1098(76)90013-3
  24. Mounier H., Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, Thèse, Université Paris-Sud, Orsay 1995 
  25. Mounier H., 10.1515/form.10.1.39, Forum Mathematicum 10 (1998), 39–58 (1998) Zbl0891.93014MR1490137DOI10.1515/form.10.1.39
  26. Mounier H., Rouchon, P., Rudolph J., Some examples of linear systems with delays, J. Europ. Syst. Autom. 31 (1997), 911–925 (1997) 
  27. Mounier H., Rudolph J., 10.1080/002071798221614, Internat. J. Control 71 (1998), 838–871, special issue “Recent Advances in the Control of Non-linear Systems” (1998) MR1658504DOI10.1080/002071798221614
  28. Olbrot A. W., 10.1109/TAC.1978.1101879, IEEE Trans. Automat. Control 23 (1978), 887–890 (1978) MR0528786DOI10.1109/TAC.1978.1101879
  29. Petit N., Creff, Y., Rouchon P., Motion planning for two classes of nonlinear systems with delays depending on the control, In: Proc. 37th IEEE Conference on Decision and Control, 1998 
  30. Quillen D., 10.1007/BF01390008, Invent. Math. 36 (1976), 167–171 (1976) Zbl0337.13011MR0427303DOI10.1007/BF01390008
  31. Rocha P., Willems J. C., 10.1137/S0363012995283054, SIAM J. Control Optim. 35 (1987), 254–264 (1987) MR1430293DOI10.1137/S0363012995283054
  32. Rotman J., An Introduction to Homological Algebra, Academic Press, Orlando 1979 Zbl1157.18001MR0538169
  33. Rowen L. H., Ring Theory, Academic Press, Boston 1991 Zbl0922.00017MR1095047
  34. Serre J.–P., Faisceaux algébriques cohérents, Annals of Math. 61 (1955), 197–278 (1955) Zbl0067.16201MR0068874
  35. Sontag E. D., Linear systems over commutative rings: a survey, Richerche Automat. 7 (1976), 1–34 (1976) 
  36. Spong M. W., Tarn T. J., 10.1109/TAC.1981.1102654, IEEE Trans. Automat. Control 26 (1981), 527–528 (1981) Zbl0474.93014MR0613571DOI10.1109/TAC.1981.1102654
  37. Willems J. C., 10.1109/9.73561, IEEE Trans. Automat. Control 36 (1991), 259–294 (1991) Zbl0737.93004MR1092818DOI10.1109/9.73561
  38. Youla D. C., Gnavi G., 10.1109/TCS.1979.1084614, IEEE Trans. Circuits and Systems 26 (1979), 105–111 (1979) Zbl0394.93004MR0521657DOI10.1109/TCS.1979.1084614
  39. Youla D. C., Pickel P. F., 10.1109/TCS.1984.1085545, IEEE Trans. Circuits and Systems 31 (1984), 513–518 (1984) Zbl0553.13003MR0747050DOI10.1109/TCS.1984.1085545
  40. Zampieri S., Modellizzazione di Sequenze di Dati Mutlidimensionali, Tesi, Università di Padova 1993 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.