On a class of linear delay systems often arising in practice
Kybernetika (2001)
- Volume: 37, Issue: 3, page [295]-308
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFliess, Michel, and Mounier, Hugues. "On a class of linear delay systems often arising in practice." Kybernetika 37.3 (2001): [295]-308. <http://eudml.org/doc/33536>.
@article{Fliess2001,
abstract = {We study the tracking control of linear delay systems. It is based on an algebraic property named $\pi $-freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.},
author = {Fliess, Michel, Mounier, Hugues},
journal = {Kybernetika},
keywords = {delay system; $\pi $-freeness; tracking control; Kalman’s finite dimensional linear controllability; finite dimensional nonlinear flat systems; delay system; -freeness; tracking control; Kalman's finite dimensional linear controllability; finite dimensional nonlinear flat systems},
language = {eng},
number = {3},
pages = {[295]-308},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On a class of linear delay systems often arising in practice},
url = {http://eudml.org/doc/33536},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Fliess, Michel
AU - Mounier, Hugues
TI - On a class of linear delay systems often arising in practice
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 3
SP - [295]
EP - 308
AB - We study the tracking control of linear delay systems. It is based on an algebraic property named $\pi $-freeness, which extends Kalman’s finite dimensional linear controllability and bears some similarity with finite dimensional nonlinear flat systems. Several examples illustrate the practical relevance of the notion.
LA - eng
KW - delay system; $\pi $-freeness; tracking control; Kalman’s finite dimensional linear controllability; finite dimensional nonlinear flat systems; delay system; -freeness; tracking control; Kalman's finite dimensional linear controllability; finite dimensional nonlinear flat systems
UR - http://eudml.org/doc/33536
ER -
References
top- Artstein Z., 10.1109/TAC.1982.1103023, IEEE Trans. Automat. Control 27 (1982), 869–879 (1982) MR0680488DOI10.1109/TAC.1982.1103023
- Bensoussan A., Prato G. Da, Delfour M. C., Mitter S. K., Representation and Control of Infinite Dimensional Systems, vol, 1 & 2. Birkhäuser, Boston 1992 & 1993 (1992) MR1182557
- Brethé D., Loiseau J. J., A result that could bear fruit for the control of delay-differential systems, In: Proc. IEEE MSCA’96. Chania 1996
- Bhat K., Koivo H., 10.1109/TAC.1976.1101165, IEEE Trans. Automat. Control 21 (1976), 292–293 (1976) MR0424297DOI10.1109/TAC.1976.1101165
- Byrnes C. I., Spong, M., Tarn T. J., 10.1007/BF01744436, Math. Systems Theory 17 (1984), 97–133 (1984) Zbl0539.93064MR0739983DOI10.1007/BF01744436
- Drakunov S., Özgüner U., Generalized sliding modes for manifold control of distributed parameter systems, In: Variable Structure and Lyapounov Control (A. S. Zinober, ed., Lecture Notes in Control and Information Sciences 193), Springer, London 1994, pp. 109–129 (193))
- Fliess M., 10.1016/0167-6911(90)90062-Y, Systems Control Lett. 15 (1990), 391–396 (1990) Zbl0727.93024MR1084580DOI10.1016/0167-6911(90)90062-Y
- Fliess M., 10.1016/0167-6911(92)90038-T, Systems Control Lett. 19 (1992), 43–45 (1992) Zbl0765.93003MR1170986DOI10.1016/0167-6911(92)90038-T
- Fliess M., Une interprétation algébrique de la transformation de Laplace et des matrices de transfert, Linear Algebra Appl. 203–204 (1994), 429–442 (1994) Zbl0802.93010MR1275520
- Fliess M., Variations sur la notion de commandabilité, In: Quelques aspects de la théorie du contrôle. Proc. Journée annuelle Soc. Math. France, Paris 2000, pp. 47–86 MR1799559
- Fliess M., Bourlès H., 10.1016/0167-6911(95)00029-1, System Control Lett. 27 (1996), 1–7 (1996) Zbl0877.93064MR1375906DOI10.1016/0167-6911(95)00029-1
- Fliess M., Lévine J., Martin, P., Rouchon P., 10.1080/00207179508921959, Internat. J. Control 61 (1995), 1327–1361 (1995) MR1613557DOI10.1080/00207179508921959
- Fliess M., Lévine J., Martin, P., Rouchon P., 10.1109/9.763209, IEEE Trans. Automat. Control 44 (1999), 922–937 (1999) Zbl0964.93028MR1690537DOI10.1109/9.763209
- Fliess M., Mounier H., Quasi-finite linear delay systems: theory and applications, In: Proc. IFAC Workshop Linear Time Delay Systems, Grenoble 1998, pp. 211–215 (1998)
- Fliess M., Marquez, R., Mounier H., PID like regulators for a class of linear delay systems, In: Proc. European Control Conference, Porto 2001
- Fliess M., Marquez, R., Mounier H., An extension of predictive control, PID regulators and Smith predictors to some linear delay systems, Internat. J. Control. Submitted Zbl1021.93015MR1916231
- Kalman R. E., Falb, L., Arbib M. A., Topics in Mathematical System Theory, McGraw–Hill, New York 1969 Zbl0231.49002MR0255260
- Lam T. Y., Serre’s Conjecture, Springer, Berlin 1978 Zbl0373.13004MR0485842
- Lang S., Algebra, Third edition. Addison–Wesley, Reading, MA 1993 Zbl1063.00002
- Manitius A. J., Olbrot A. W., 10.1109/TAC.1979.1102124, IEEE Trans. Automat. Control 24 (1979), 541–553 (1979) Zbl0425.93029MR0538808DOI10.1109/TAC.1979.1102124
- Marshall J., Górecki H., Korytowski, A., Walton K., Time Delay Systems Stability and Performance Criteria with Applications, Ellis Horwood, New York 1992 Zbl0769.93001
- Martin P., Murray R. M., Rouchon P., Flat systems, In: Plenary Lectures and Mini–Courses, ECC 97 (G. Bastin and M. Gevers, eds.), Brussels 1997, pp. 211–264 (1997)
- Morse A. S., 10.1016/0005-1098(76)90013-3, Automatica 12 (1976), 529–531 (1976) Zbl0345.93023MR0437162DOI10.1016/0005-1098(76)90013-3
- Mounier H., Propriétés structurelles des systèmes linéaires à retards: aspects théoriques et pratiques, Thèse, Université Paris-Sud, Orsay 1995
- Mounier H., 10.1515/form.10.1.39, Forum Mathematicum 10 (1998), 39–58 (1998) Zbl0891.93014MR1490137DOI10.1515/form.10.1.39
- Mounier H., Rouchon, P., Rudolph J., Some examples of linear systems with delays, J. Europ. Syst. Autom. 31 (1997), 911–925 (1997)
- Mounier H., Rudolph J., 10.1080/002071798221614, Internat. J. Control 71 (1998), 838–871, special issue “Recent Advances in the Control of Non-linear Systems” (1998) MR1658504DOI10.1080/002071798221614
- Olbrot A. W., 10.1109/TAC.1978.1101879, IEEE Trans. Automat. Control 23 (1978), 887–890 (1978) MR0528786DOI10.1109/TAC.1978.1101879
- Petit N., Creff, Y., Rouchon P., Motion planning for two classes of nonlinear systems with delays depending on the control, In: Proc. 37th IEEE Conference on Decision and Control, 1998
- Quillen D., 10.1007/BF01390008, Invent. Math. 36 (1976), 167–171 (1976) Zbl0337.13011MR0427303DOI10.1007/BF01390008
- Rocha P., Willems J. C., 10.1137/S0363012995283054, SIAM J. Control Optim. 35 (1987), 254–264 (1987) MR1430293DOI10.1137/S0363012995283054
- Rotman J., An Introduction to Homological Algebra, Academic Press, Orlando 1979 Zbl1157.18001MR0538169
- Rowen L. H., Ring Theory, Academic Press, Boston 1991 Zbl0922.00017MR1095047
- Serre J.–P., Faisceaux algébriques cohérents, Annals of Math. 61 (1955), 197–278 (1955) Zbl0067.16201MR0068874
- Sontag E. D., Linear systems over commutative rings: a survey, Richerche Automat. 7 (1976), 1–34 (1976)
- Spong M. W., Tarn T. J., 10.1109/TAC.1981.1102654, IEEE Trans. Automat. Control 26 (1981), 527–528 (1981) Zbl0474.93014MR0613571DOI10.1109/TAC.1981.1102654
- Willems J. C., 10.1109/9.73561, IEEE Trans. Automat. Control 36 (1991), 259–294 (1991) Zbl0737.93004MR1092818DOI10.1109/9.73561
- Youla D. C., Gnavi G., 10.1109/TCS.1979.1084614, IEEE Trans. Circuits and Systems 26 (1979), 105–111 (1979) Zbl0394.93004MR0521657DOI10.1109/TCS.1979.1084614
- Youla D. C., Pickel P. F., 10.1109/TCS.1984.1085545, IEEE Trans. Circuits and Systems 31 (1984), 513–518 (1984) Zbl0553.13003MR0747050DOI10.1109/TCS.1984.1085545
- Zampieri S., Modellizzazione di Sequenze di Dati Mutlidimensionali, Tesi, Università di Padova 1993
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.