Solution for a classical problem in the calculus of variations via rationalized Haar functions
Mohsen Razzaghi; Yadollah Ordokhani
Kybernetika (2001)
- Volume: 37, Issue: 5, page [575]-583
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topRazzaghi, Mohsen, and Ordokhani, Yadollah. "Solution for a classical problem in the calculus of variations via rationalized Haar functions." Kybernetika 37.5 (2001): [575]-583. <http://eudml.org/doc/33552>.
@article{Razzaghi2001,
abstract = {A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.},
author = {Razzaghi, Mohsen, Ordokhani, Yadollah},
journal = {Kybernetika},
keywords = {variational problem; brachistochrone problem; nonlinear optimal control problem; variational problem; brachistochrone problem; nonlinear optimal control problem},
language = {eng},
number = {5},
pages = {[575]-583},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Solution for a classical problem in the calculus of variations via rationalized Haar functions},
url = {http://eudml.org/doc/33552},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Razzaghi, Mohsen
AU - Ordokhani, Yadollah
TI - Solution for a classical problem in the calculus of variations via rationalized Haar functions
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 5
SP - [575]
EP - 583
AB - A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.
LA - eng
KW - variational problem; brachistochrone problem; nonlinear optimal control problem; variational problem; brachistochrone problem; nonlinear optimal control problem
UR - http://eudml.org/doc/33552
ER -
References
top- Balakrishnan A. V., Neustadt L. W., Computing Methods in Optimization Problems, Academic Press, New York 1964 Zbl0185.00104MR0167365
- Beauchamp K. G., Walsh Functions and their Applications, Academic Press, New York 1985, pp. 72–86 (1985) MR0462758
- Bellman R., Dynamic Programming, Princeton University Press, N.J. 1957 Zbl1205.90002MR0090477
- Bryson A. E., Ho Y. C., Applied Optimal Control, Blaisdell Waltham 1969
- Chang R. Y., Wang M. L., 10.1007/BF00934535, J. Optim. Theory Appl. 39 (1983), 299–307 (1983) MR0693689DOI10.1007/BF00934535
- Chen C. F., Hsiao C. H., 10.1016/0016-0032(75)90199-4, J. Franklin Inst. 300 (1975), 265–280 (1975) Zbl0339.49017MR0448874DOI10.1016/0016-0032(75)90199-4
- Dyer P., McReynolds S. R., The Computation and Theory of Optimal Control, Academic Press, New York 1970 Zbl0256.49002MR0263490
- Horng I. R., Chou J. H., 10.1080/00207728508926718, Internat. J. Systems Sci. 16 (1985), 855–861 (1985) Zbl0568.49019MR0804297DOI10.1080/00207728508926718
- Hwang C., Shih Y. P., 10.1007/BF00934611, J. Optim. Theory Appl. (1983), 143–149 (1983) Zbl0481.49005MR0693680DOI10.1007/BF00934611
- Hwang C., Shih Y. P., 10.1007/BF00940816, J. Optim. Theory Appl. 45 (1985), 101–112 (1985) Zbl0541.93031MR0778160DOI10.1007/BF00940816
- Lynch R. T., Reis J. J., Haar transform image coding, In: Proc. National Telecommun. Conference, Dallas 1976, pp. 44.3–1–44.3 (1976)
- Ohkita M., Kobayashi Y., 10.1109/TCS.1986.1086019, IEEE Trans. Circuit and Systems 9 (1986), 853–862 (1986) Zbl0613.65072DOI10.1109/TCS.1986.1086019
- Ohkita M., Kobayashi Y., 10.1016/0378-4754(88)90055-9, Math. Comput. Simulation 30 (1988), 419–428 (1988) Zbl0659.65109MR0971411DOI10.1016/0378-4754(88)90055-9
- Phillips G. M., Taylor P. J., Theory and Applications of Numerical Analysis, Academic Press, New York 1973 Zbl0312.65002MR0343523
- Razzaghi M., Nazarzadeh J., Walsh functions, Wiley Encyclopedia of Electrical and Electronics Engineering 23 (1999), 429–440 (1999)
- Razzaghi M., Ordokhani Y., An application of rationalized Haar functions for variational problems, Appl. Math. Math. Comput. To appear Zbl1020.49026MR1842613
- Razzaghi M., Razzaghi, M., Arabshahi A., 10.1016/0096-3003(90)90065-B, Appl. Math. Math. Comput. 40 (1990), 215–224 (1990) MR1082397DOI10.1016/0096-3003(90)90065-B
- Reis J. J., Lynch R. T., Butman J., Adaptive Haar transform video bandwidth reduction system for RPV’s, In: Proc. Ann. Meeting Soc. Photo Optic Inst. Eng. (SPIE), San Diego 1976, pp. 24–35 (1976)
- Tikhomirov V. M., Stories about maxima and minima, Amer. Math. Soc. (1990), 265–280 (1990) Zbl0746.49001MR1152027
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.