Solution for a classical problem in the calculus of variations via rationalized Haar functions

Mohsen Razzaghi; Yadollah Ordokhani

Kybernetika (2001)

  • Volume: 37, Issue: 5, page [575]-583
  • ISSN: 0023-5954

Abstract

top
A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.

How to cite

top

Razzaghi, Mohsen, and Ordokhani, Yadollah. "Solution for a classical problem in the calculus of variations via rationalized Haar functions." Kybernetika 37.5 (2001): [575]-583. <http://eudml.org/doc/33552>.

@article{Razzaghi2001,
abstract = {A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.},
author = {Razzaghi, Mohsen, Ordokhani, Yadollah},
journal = {Kybernetika},
keywords = {variational problem; brachistochrone problem; nonlinear optimal control problem; variational problem; brachistochrone problem; nonlinear optimal control problem},
language = {eng},
number = {5},
pages = {[575]-583},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Solution for a classical problem in the calculus of variations via rationalized Haar functions},
url = {http://eudml.org/doc/33552},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Razzaghi, Mohsen
AU - Ordokhani, Yadollah
TI - Solution for a classical problem in the calculus of variations via rationalized Haar functions
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 5
SP - [575]
EP - 583
AB - A numerical technique for solving the classical brachistochrone problem in the calculus of variations is presented. The brachistochrone problem is first formulated as a nonlinear optimal control problem. Application of this method results in the transformation of differential and integral expressions into some algebraic equations to which Newton-type methods can be applied. The method is general, and yields accurate results.
LA - eng
KW - variational problem; brachistochrone problem; nonlinear optimal control problem; variational problem; brachistochrone problem; nonlinear optimal control problem
UR - http://eudml.org/doc/33552
ER -

References

top
  1. Balakrishnan A. V., Neustadt L. W., Computing Methods in Optimization Problems, Academic Press, New York 1964 Zbl0185.00104MR0167365
  2. Beauchamp K. G., Walsh Functions and their Applications, Academic Press, New York 1985, pp. 72–86 (1985) MR0462758
  3. Bellman R., Dynamic Programming, Princeton University Press, N.J. 1957 Zbl1205.90002MR0090477
  4. Bryson A. E., Ho Y. C., Applied Optimal Control, Blaisdell Waltham 1969 
  5. Chang R. Y., Wang M. L., 10.1007/BF00934535, J. Optim. Theory Appl. 39 (1983), 299–307 (1983) MR0693689DOI10.1007/BF00934535
  6. Chen C. F., Hsiao C. H., 10.1016/0016-0032(75)90199-4, J. Franklin Inst. 300 (1975), 265–280 (1975) Zbl0339.49017MR0448874DOI10.1016/0016-0032(75)90199-4
  7. Dyer P., McReynolds S. R., The Computation and Theory of Optimal Control, Academic Press, New York 1970 Zbl0256.49002MR0263490
  8. Horng I. R., Chou J. H., 10.1080/00207728508926718, Internat. J. Systems Sci. 16 (1985), 855–861 (1985) Zbl0568.49019MR0804297DOI10.1080/00207728508926718
  9. Hwang C., Shih Y. P., 10.1007/BF00934611, J. Optim. Theory Appl. (1983), 143–149 (1983) Zbl0481.49005MR0693680DOI10.1007/BF00934611
  10. Hwang C., Shih Y. P., 10.1007/BF00940816, J. Optim. Theory Appl. 45 (1985), 101–112 (1985) Zbl0541.93031MR0778160DOI10.1007/BF00940816
  11. Lynch R. T., Reis J. J., Haar transform image coding, In: Proc. National Telecommun. Conference, Dallas 1976, pp. 44.3–1–44.3 (1976) 
  12. Ohkita M., Kobayashi Y., 10.1109/TCS.1986.1086019, IEEE Trans. Circuit and Systems 9 (1986), 853–862 (1986) Zbl0613.65072DOI10.1109/TCS.1986.1086019
  13. Ohkita M., Kobayashi Y., 10.1016/0378-4754(88)90055-9, Math. Comput. Simulation 30 (1988), 419–428 (1988) Zbl0659.65109MR0971411DOI10.1016/0378-4754(88)90055-9
  14. Phillips G. M., Taylor P. J., Theory and Applications of Numerical Analysis, Academic Press, New York 1973 Zbl0312.65002MR0343523
  15. Razzaghi M., Nazarzadeh J., Walsh functions, Wiley Encyclopedia of Electrical and Electronics Engineering 23 (1999), 429–440 (1999) 
  16. Razzaghi M., Ordokhani Y., An application of rationalized Haar functions for variational problems, Appl. Math. Math. Comput. To appear Zbl1020.49026MR1842613
  17. Razzaghi M., Razzaghi, M., Arabshahi A., 10.1016/0096-3003(90)90065-B, Appl. Math. Math. Comput. 40 (1990), 215–224 (1990) MR1082397DOI10.1016/0096-3003(90)90065-B
  18. Reis J. J., Lynch R. T., Butman J., Adaptive Haar transform video bandwidth reduction system for RPV’s, In: Proc. Ann. Meeting Soc. Photo Optic Inst. Eng. (SPIE), San Diego 1976, pp. 24–35 (1976) 
  19. Tikhomirov V. M., Stories about maxima and minima, Amer. Math. Soc. (1990), 265–280 (1990) Zbl0746.49001MR1152027

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.