New coprime polynomial fraction representation of transfer function matrix
Kybernetika (2001)
- Volume: 37, Issue: 6, page [725]-735
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topSmagina, Yelena M.. "New coprime polynomial fraction representation of transfer function matrix." Kybernetika 37.6 (2001): [725]-735. <http://eudml.org/doc/33561>.
@article{Smagina2001,
abstract = {A new form of the coprime polynomial fraction $C(s)\,F(s)^\{-1\}$ of a transfer function matrix $G(s)$ is presented where the polynomial matrices $C(s)$ and $F(s)$ have the form of a matrix (or generalized matrix) polynomials with the structure defined directly by the controllability characteristics of a state- space model and Markov matrices $HB$, $HAB$, ...},
author = {Smagina, Yelena M.},
journal = {Kybernetika},
keywords = {coprime polynomial fraction; transfer function matrix; polynomial matrix; Markov matrices; state-space model; coprime polynomial fraction; transfer function matrix; polynomial matrix; Markov matrices; state-space model},
language = {eng},
number = {6},
pages = {[725]-735},
publisher = {Institute of Information Theory and Automation AS CR},
title = {New coprime polynomial fraction representation of transfer function matrix},
url = {http://eudml.org/doc/33561},
volume = {37},
year = {2001},
}
TY - JOUR
AU - Smagina, Yelena M.
TI - New coprime polynomial fraction representation of transfer function matrix
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 6
SP - [725]
EP - 735
AB - A new form of the coprime polynomial fraction $C(s)\,F(s)^{-1}$ of a transfer function matrix $G(s)$ is presented where the polynomial matrices $C(s)$ and $F(s)$ have the form of a matrix (or generalized matrix) polynomials with the structure defined directly by the controllability characteristics of a state- space model and Markov matrices $HB$, $HAB$, ...
LA - eng
KW - coprime polynomial fraction; transfer function matrix; polynomial matrix; Markov matrices; state-space model; coprime polynomial fraction; transfer function matrix; polynomial matrix; Markov matrices; state-space model
UR - http://eudml.org/doc/33561
ER -
References
top- Asseo S. J., 10.1109/TAC.1968.1098823, IEEE Trans. Automat. Control AC–13 (1968), 129–131 (1968) DOI10.1109/TAC.1968.1098823
- Gohberg I., Lancaster, P., Rodman L., Matrix Polynomial, Academic Press, New York 1982 MR0662418
- Davison E. J., Wang S. H., 10.1016/0005-1098(74)90085-5, Automatica 10 (1974), 643–658 (1974) DOI10.1016/0005-1098(74)90085-5
- Desoer C. A., Vidyasagar M., Feedback Systems: Input-Output Properties, Academic Press, New York 1975 Zbl1153.93015MR0490289
- Isidori A., Nonlinear Control Systems, Springer, New York 1995 Zbl0931.93005MR1410988
- Kailath T., Linear Systems, Prentice–Hall, Englewood Cliffs, N.J. 1980 Zbl0870.93013MR0569473
- Kwakernaak H., Progress in the polynomial solution in the standart problem, In: Proc. 11 IFAC Congress, Tallinn 1990, 5, pp. 122–129 (1990)
- Kučera V., Discrete Linear Control – The Polynomial Equation Approach, Academia, Prague 1979 Zbl0432.93001MR0573447
- Resende P., Silva V. V. R., On the modal order reduction of linear multivariable systems using a block-Schwartz realization, In: Proc. 11 IFAC Congress, Tallinn 1990, 2, pp. 266–270 (1990)
- Rosenbrock H. H., State Space and Multivariable Theory, Thomas Nelson, London 1970 Zbl0246.93010MR0325201
- Smagina, Ye. M., Problems of Linear Multivariable System Analysis Using the Concept of System Zeros, Tomsk University, Tomsk 1990
- Smagina, Ye. M., Definition, Determination and Application of System Zeros, Doct. Sci. Thesis, Tomsk 1994
- Smagina, Ye. M., New approach to transfer function matrix factorization, In: Proc. 1997 IFAC Conference on Control of Industrial Systems, Pergamon France 1997, 1, pp. 307–312 (1997)
- Stefanidis P., Paplinski A. P., Gibbard M. J., Numerical operations with polynomial matrices (Lecture Notes in Control and Inform, Sciences 171). Springer, Berlin 1992 MR1151835
- Tokarzewski J., 10.1109/9.718619, IEEE Trans. Automat. Control AC–43 (1998), 1285–1288 (1998) MR1640160DOI10.1109/9.718619
- Wolovich W. A., 10.1109/TAC.1973.1100393, IEEE Trans. Automat. Control AC–18 (1973), 544–546 (1973) Zbl0266.93017MR0441440DOI10.1109/TAC.1973.1100393
- Wolovich W. A., Linear Multivariable Systems, Springer, New York 1974 Zbl0534.93026MR0359881
- Youla D. C., Jarb H. A., Bongiorno J. J., 10.1109/TAC.1976.1101223, Part 2: The multivariable case. IEEE Trans. Automat. Control AC–21 (1976), 319–338 (1976) MR0446637DOI10.1109/TAC.1976.1101223
- Yokoyama R., Kinnen E., 10.1080/00207177308932475, Internat. J. Control 17 (1976), 1297–1312 (1976) MR0335019DOI10.1080/00207177308932475
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.