New coprime polynomial fraction representation of transfer function matrix

Yelena M. Smagina

Kybernetika (2001)

  • Volume: 37, Issue: 6, page [725]-735
  • ISSN: 0023-5954

Abstract

top
A new form of the coprime polynomial fraction C ( s ) F ( s ) - 1 of a transfer function matrix G ( s ) is presented where the polynomial matrices C ( s ) and F ( s ) have the form of a matrix (or generalized matrix) polynomials with the structure defined directly by the controllability characteristics of a state- space model and Markov matrices H B , H A B , ...

How to cite

top

Smagina, Yelena M.. "New coprime polynomial fraction representation of transfer function matrix." Kybernetika 37.6 (2001): [725]-735. <http://eudml.org/doc/33561>.

@article{Smagina2001,
abstract = {A new form of the coprime polynomial fraction $C(s)\,F(s)^\{-1\}$ of a transfer function matrix $G(s)$ is presented where the polynomial matrices $C(s)$ and $F(s)$ have the form of a matrix (or generalized matrix) polynomials with the structure defined directly by the controllability characteristics of a state- space model and Markov matrices $HB$, $HAB$, ...},
author = {Smagina, Yelena M.},
journal = {Kybernetika},
keywords = {coprime polynomial fraction; transfer function matrix; polynomial matrix; Markov matrices; state-space model; coprime polynomial fraction; transfer function matrix; polynomial matrix; Markov matrices; state-space model},
language = {eng},
number = {6},
pages = {[725]-735},
publisher = {Institute of Information Theory and Automation AS CR},
title = {New coprime polynomial fraction representation of transfer function matrix},
url = {http://eudml.org/doc/33561},
volume = {37},
year = {2001},
}

TY - JOUR
AU - Smagina, Yelena M.
TI - New coprime polynomial fraction representation of transfer function matrix
JO - Kybernetika
PY - 2001
PB - Institute of Information Theory and Automation AS CR
VL - 37
IS - 6
SP - [725]
EP - 735
AB - A new form of the coprime polynomial fraction $C(s)\,F(s)^{-1}$ of a transfer function matrix $G(s)$ is presented where the polynomial matrices $C(s)$ and $F(s)$ have the form of a matrix (or generalized matrix) polynomials with the structure defined directly by the controllability characteristics of a state- space model and Markov matrices $HB$, $HAB$, ...
LA - eng
KW - coprime polynomial fraction; transfer function matrix; polynomial matrix; Markov matrices; state-space model; coprime polynomial fraction; transfer function matrix; polynomial matrix; Markov matrices; state-space model
UR - http://eudml.org/doc/33561
ER -

References

top
  1. Asseo S. J., 10.1109/TAC.1968.1098823, IEEE Trans. Automat. Control AC–13 (1968), 129–131 (1968) DOI10.1109/TAC.1968.1098823
  2. Gohberg I., Lancaster, P., Rodman L., Matrix Polynomial, Academic Press, New York 1982 MR0662418
  3. Davison E. J., Wang S. H., 10.1016/0005-1098(74)90085-5, Automatica 10 (1974), 643–658 (1974) DOI10.1016/0005-1098(74)90085-5
  4. Desoer C. A., Vidyasagar M., Feedback Systems: Input-Output Properties, Academic Press, New York 1975 Zbl1153.93015MR0490289
  5. Isidori A., Nonlinear Control Systems, Springer, New York 1995 Zbl0931.93005MR1410988
  6. Kailath T., Linear Systems, Prentice–Hall, Englewood Cliffs, N.J. 1980 Zbl0870.93013MR0569473
  7. Kwakernaak H., Progress in the polynomial solution in the standart H problem, In: Proc. 11 IFAC Congress, Tallinn 1990, 5, pp. 122–129 (1990) 
  8. Kučera V., Discrete Linear Control – The Polynomial Equation Approach, Academia, Prague 1979 Zbl0432.93001MR0573447
  9. Resende P., Silva V. V. R., On the modal order reduction of linear multivariable systems using a block-Schwartz realization, In: Proc. 11 IFAC Congress, Tallinn 1990, 2, pp. 266–270 (1990) 
  10. Rosenbrock H. H., State Space and Multivariable Theory, Thomas Nelson, London 1970 Zbl0246.93010MR0325201
  11. Smagina, Ye. M., Problems of Linear Multivariable System Analysis Using the Concept of System Zeros, Tomsk University, Tomsk 1990 
  12. Smagina, Ye. M., Definition, Determination and Application of System Zeros, Doct. Sci. Thesis, Tomsk 1994 
  13. Smagina, Ye. M., New approach to transfer function matrix factorization, In: Proc. 1997 IFAC Conference on Control of Industrial Systems, Pergamon France 1997, 1, pp. 307–312 (1997) 
  14. Stefanidis P., Paplinski A. P., Gibbard M. J., Numerical operations with polynomial matrices (Lecture Notes in Control and Inform, Sciences 171). Springer, Berlin 1992 MR1151835
  15. Tokarzewski J., 10.1109/9.718619, IEEE Trans. Automat. Control AC–43 (1998), 1285–1288 (1998) MR1640160DOI10.1109/9.718619
  16. Wolovich W. A., 10.1109/TAC.1973.1100393, IEEE Trans. Automat. Control AC–18 (1973), 544–546 (1973) Zbl0266.93017MR0441440DOI10.1109/TAC.1973.1100393
  17. Wolovich W. A., Linear Multivariable Systems, Springer, New York 1974 Zbl0534.93026MR0359881
  18. Youla D. C., Jarb H. A., Bongiorno J. J., 10.1109/TAC.1976.1101223, Part 2: The multivariable case. IEEE Trans. Automat. Control AC–21 (1976), 319–338 (1976) MR0446637DOI10.1109/TAC.1976.1101223
  19. Yokoyama R., Kinnen E., 10.1080/00207177308932475, Internat. J. Control 17 (1976), 1297–1312 (1976) MR0335019DOI10.1080/00207177308932475

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.