Displaying similar documents to “New coprime polynomial fraction representation of transfer function matrix”

An equivalent matrix pencilfor bivariate polynomial matrices

Mohamed Boudellioua (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, we present a simple algorithm for the reduction of a given bivariate polynomial matrix to a pencil form which is encountered in Fornasini-Marchesini's type of singular systems. It is shown that the resulting matrix pencil is related to the original polynomial matrix by the transformation of zero coprime equivalence. The exact form of both the matrix pencil and the transformation connecting it to the original matrix are established.

Proper feedback compensators for a strictly proper plant by polynomial equations

Frank Callier, Ferdinand Kraffer (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

We review the polynomial matrix compensator equation X_lD_r + Y_lN_r = Dk (COMP), e.g. (Callier and Desoer, 1982, Kučera, 1979; 1991), where (a) the right-coprime polynomial matrix pair (N_r, D_r) is given by the strictly proper rational plant right matrix-fraction P = N_rD_r, (b) Dk is a given nonsingular stable closed-loop characteristic polynomial matrix, and (c) (X_l, Y_l) is a polynomial matrix solution pair resulting possibly in a (stabilizing) rational compensator given by the...

Parametrization and reliable extraction of proper compensators

Ferdinand Kraffer, Petr Zagalak (2002)

Kybernetika

Similarity:

The polynomial matrix equation X l D r + Y l N r = D k is solved for those X l and Y l that give proper transfer functions X l - 1 Y l characterizing a subclass of compensators, contained in the class whose arbitrary element can be cascaded to a plant with the given strictly proper transfer function N r D r - 1 such that wrapping the negative unity feedback round the cascade gives a system whose poles are specified by D k . The subclass is navigated and extracted...