A new practical linear space algorithm for the longest common subsequence problem
Kybernetika (2002)
- Volume: 38, Issue: 1, page [45]-66
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGoeman, Heiko, and Clausen, Michael. "A new practical linear space algorithm for the longest common subsequence problem." Kybernetika 38.1 (2002): [45]-66. <http://eudml.org/doc/33566>.
@article{Goeman2002,
abstract = {This paper deals with a new practical method for solving the longest common subsequence (LCS) problem. Given two strings of lengths $m$ and $n$, $n\ge m$, on an alphabet of size $s$, we first present an algorithm which determines the length $p$ of an LCS in $O(ns+\min \lbrace mp,p(n-p)\rbrace )$ time and $O(ns)$ space. This result has been achieved before [ric94,ric95], but our algorithm is significantly faster than previous methods. We also provide a second algorithm which generates an LCS in $O(ns+\min \lbrace mp,m\log m+p(n-p)\rbrace )$ time while preserving the linear space bound, thus solving the problem posed in [ric94,ric95]. Experimental results confirm the efficiency of our method.},
author = {Goeman, Heiko, Clausen, Michael},
journal = {Kybernetika},
keywords = {longest common subsequence problem; Rick’s algorithm; longest common subsequence problem; Rick's algorithm},
language = {eng},
number = {1},
pages = {[45]-66},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new practical linear space algorithm for the longest common subsequence problem},
url = {http://eudml.org/doc/33566},
volume = {38},
year = {2002},
}
TY - JOUR
AU - Goeman, Heiko
AU - Clausen, Michael
TI - A new practical linear space algorithm for the longest common subsequence problem
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 1
SP - [45]
EP - 66
AB - This paper deals with a new practical method for solving the longest common subsequence (LCS) problem. Given two strings of lengths $m$ and $n$, $n\ge m$, on an alphabet of size $s$, we first present an algorithm which determines the length $p$ of an LCS in $O(ns+\min \lbrace mp,p(n-p)\rbrace )$ time and $O(ns)$ space. This result has been achieved before [ric94,ric95], but our algorithm is significantly faster than previous methods. We also provide a second algorithm which generates an LCS in $O(ns+\min \lbrace mp,m\log m+p(n-p)\rbrace )$ time while preserving the linear space bound, thus solving the problem posed in [ric94,ric95]. Experimental results confirm the efficiency of our method.
LA - eng
KW - longest common subsequence problem; Rick’s algorithm; longest common subsequence problem; Rick's algorithm
UR - http://eudml.org/doc/33566
ER -
References
top- Aho A. V., Hirschberg D. S., Ullman J. D., 10.1145/321921.321922, J. Assoc. Comput. Mach. 23 (1976), 1, 1–12 (1976) Zbl0316.68027MR0398159DOI10.1145/321921.321922
- Apostolico A., 10.1016/0020-0190(86)90044-X, Inform. Process. Lett. 23 (1986), 63–69 (1986) Zbl0608.68057MR0858225DOI10.1016/0020-0190(86)90044-X
- Apostolico A., 10.1016/0020-0190(87)90167-0, Inform. Process. Lett. 25 (1987), 235–236 (1987) MR0896141DOI10.1016/0020-0190(87)90167-0
- Apostolico A., Guerra G., 10.1007/BF01840365, Algorithmica 2 (1987), 315–336 (1987) Zbl0636.68083MR0911954DOI10.1007/BF01840365
- Apostolico A., Browne, S., Guerra C., 10.1016/0304-3975(92)90132-Y, Theoret. Comput. Sci. 92 (1992), 3–17 (1992) Zbl0747.68019MR1143128DOI10.1016/0304-3975(92)90132-Y
- Chin F. Y. L., Poon C. K., A fast algorithm for computing longest common subsequences of small alphabet size, J. Inform. Process. 13 (1990), 4, 463–469 (1990) Zbl0768.68020
- Chvátal V., Sankoff D., 10.2307/3212444, J. Appl. Probab. 12 (1975), 306–315 (1975) MR0405531DOI10.2307/3212444
- Dančík V., Paterson M., Upper bounds for the expected length of a longest common subsequence of two binary sequences, In: Proceedings 11th Annual Symp. on Theoretical Aspects of Computer Science (Lecture Notes in Computer Science 775), Springer-Verlag, Berlin 1994, pp. 669–678 (1994) Zbl0941.68812MR1288571
- Dayhoff M. O., 10.1016/0022-5193(65)90096-2, J. Theoret. Biol. 8 (1965), 97–112 (1965) DOI10.1016/0022-5193(65)90096-2
- Dayhoff M. O., 10.1038/scientificamerican0769-86, Sci. Amer. 221 (1969), 1, 86–95 (1969) DOI10.1038/scientificamerican0769-86
- Deken J. G., 10.1016/0012-365X(79)90057-8, Discrete Math. 26 (1979), 17–31 (1979) Zbl0403.68064MR0535080DOI10.1016/0012-365X(79)90057-8
- Dilworth R. P., 10.2307/1969503, Ann. of Math. 51 (1950), 161–166 (1950) Zbl0038.02003MR0032578DOI10.2307/1969503
- Fu K. S., Bhargava B. K., Tree systems for syntactic pattern recognition, IEEE Trans. Comput. C–22 (1973), 12, 1087–1099 (1973) Zbl0269.68059MR0359424
- Gallant J., Maier, D., Storer J. A., 10.1016/0022-0000(80)90004-5, J. Comput. System Sci. 20 (1980), 50–58 (1980) Zbl0436.68043MR0566641DOI10.1016/0022-0000(80)90004-5
- Goeman H., Time and Space Efficient Algorithms for Decomposing Certain Partially Ordered Sets, PhD Thesis, Department of Computer Science, University of Bonn 1999. To appear in Bayreuther Mathematische Schriften (1999) MR1942444
- Hirschberg D. S., 10.1145/360825.360861, Comm. ACM 18 (1975), 6, 341–343 (1975) Zbl0301.68042MR0375829DOI10.1145/360825.360861
- Hirschberg D. S., 10.1145/322033.322044, J. Assoc. Comput. Mach. 24 (1977), 4, 664–675 (1977) Zbl0402.68041MR0461985DOI10.1145/322033.322044
- Hsu W. J., Du M. W., 10.1016/0022-0000(84)90025-4, J. Comput. System Sci. 29 (1984), 133–152 (1984) Zbl0587.68045MR0773417DOI10.1016/0022-0000(84)90025-4
- Hunt J. W., Szymanski T. G., 10.1145/359581.359603, Comm. ACM 20 (1977), 5, 350–353 (1977) Zbl0354.68078MR0436655DOI10.1145/359581.359603
- Kumar S. K., Rangan C. P., 10.1007/BF00265993, Acta Inform. 24 (1987), 353–363 (1987) Zbl0642.68066MR0894559DOI10.1007/BF00265993
- Lowrance R., Wagner R. A., 10.1145/321879.321880, J. Assoc. Comput. Mach. 22, (1975), 2, 177–183 (1975) Zbl0301.68028MR0366088DOI10.1145/321879.321880
- Lu S. Y., Fu K. S., 10.1109/TSMC.1978.4309979, IEEE Trans. Systems Man Cybernet. SMC–8, (1978), 5, 381–389 (1978) Zbl0378.68048MR0471478DOI10.1109/TSMC.1978.4309979
- Maier D., 10.1145/322063.322075, J. Assoc. Comput. Mach. 25 (1978), 2, 322–336 (1978) MR0483700DOI10.1145/322063.322075
- Masek W. J., Paterson M. S., 10.1016/0022-0000(80)90002-1, J. Comput. System Sci. 20 (1980), 1, 18–31 (1980) MR0566639DOI10.1016/0022-0000(80)90002-1
- Myers E. W., 10.1007/BF01840446, Algorithmica 1 (1986), 251–266 (1986) Zbl0639.68054MR1554305DOI10.1007/BF01840446
- Nakatsu N., Kambayashi, Y., Yajima S., 10.1007/BF00264437, Acta Inform. 18 (1982), 171–179 (1982) Zbl0493.68041MR0687701DOI10.1007/BF00264437
- Needleman S. B., Wunsch C. S., 10.1016/0022-2836(70)90057-4, J. Molecular Biol. 48 (1970), 443–453 (1970) DOI10.1016/0022-2836(70)90057-4
- Paterson M., Dančík V., Longest common subsequences, In: Proceedings, 19th Intern. Symp. on Mathematical Foundations of Computer Science (Lecture Notes in Computer Science 841), Springer Verlag, Berlin 1994, pp. 127–142 (19th) MR1319827
- Rick C., New Algorithms for the Longest Common Subsequence Problem, Research Report No. 85123–CS, Department of Computer Science, University of Bonn 1994
- Rick C., A new flexible algorithm for the longest common subsequence problem, In: Proceedings, 6th Annual Symp. on Combinatorial Pattern Matching (Lecture Notes in Computer Science 937), Springer Verlag, Berlin 1995, pp. 340–351 (1995) Zbl0841.68051MR1467525
- Sankoff D., Cedergren R. J., 10.1016/0022-2836(73)90369-0, J. Molecular Biol. 77 (1973), 159–164 (1973) DOI10.1016/0022-2836(73)90369-0
- Sankoff D., Kruskal J. B., Time Warps, String Edits, and Macromolecules: The Theory And Practice of Sequence Comparison, Addison–Wesley, Reading, MA 1983 MR0726027
- Ukkonen E., 10.1016/S0019-9958(85)80046-2, Inform. and Control 64 (1985), 100–118 (1985) Zbl0575.68090MR0837093DOI10.1016/S0019-9958(85)80046-2
- Wagner R. A., On the complexity of the extended string–to–string correction problem, In: Proceedings, 7th Ann. ACM Sympos. on Theory of Comput. 1975, pp. 218–223 (1975) Zbl0357.68047MR0445910
- Wagner R. A., Fischer M. J., 10.1145/321796.321811, J. Assoc. Comput. Mach. 21 (1974), 1, 168–173 (1974) Zbl0278.68032MR0356576DOI10.1145/321796.321811
- Wong C. K., Chandra A. K., 10.1145/321921.321923, J. Assoc. Comput. Mach. 28 (1976), 1, 13–18 (1976) Zbl0316.68019MR0398173DOI10.1145/321921.321923
- Wu S., Manber U., Myers, G., Miller W., 10.1016/0020-0190(90)90035-V, Inform. Process. Lett. 35 (1990), 317–323 (1990) Zbl0698.68055MR1079428DOI10.1016/0020-0190(90)90035-V
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.