Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces

Olga Hadžić; Endre Pap; Mirko Budinčević

Kybernetika (2002)

  • Volume: 38, Issue: 3, page [363]-382
  • ISSN: 0023-5954

How to cite

top

Hadžić, Olga, Pap, Endre, and Budinčević, Mirko. "Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces." Kybernetika 38.3 (2002): [363]-382. <http://eudml.org/doc/33589>.

@article{Hadžić2002,
author = {Hadžić, Olga, Pap, Endre, Budinčević, Mirko},
journal = {Kybernetika},
keywords = {probabilistic metric space; triangular norm; Menger space; fixed point theorem; probabilistic metric space; triangular norm; Menger space; fixed point theorem},
language = {eng},
number = {3},
pages = {[363]-382},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces},
url = {http://eudml.org/doc/33589},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Hadžić, Olga
AU - Pap, Endre
AU - Budinčević, Mirko
TI - Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 3
SP - [363]
EP - 382
LA - eng
KW - probabilistic metric space; triangular norm; Menger space; fixed point theorem; probabilistic metric space; triangular norm; Menger space; fixed point theorem
UR - http://eudml.org/doc/33589
ER -

References

top
  1. J. Aczel, Lectures on Functional Equations and their Applications, Academic Press, New York 1969. (1969) MR0208210
  2. O. Hadžič, E. Pap, On some classes of t-norms important in the fixed point theory, Bull. Acad. Serbe Sci. Art. Sci. Math. 25 (2000), 15-28. MR1842812
  3. O. Hadžič, E. Pap, A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces, Fuzzy Sets and Systems 127 (2002), 333-344. MR1899066
  4. O. Hadžič, E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, Kluwer Academic Publishers, Dordrecht 2001. MR1896451
  5. T. L. Hicks, Fixed point theory in probabilistic metric spaces, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72. (1983) Zbl0574.54044MR0786431
  6. O. Kaleva, S. Seikalla, 10.1016/0165-0114(84)90069-1, Fuzzy Sets and Systems 12 (1984), 215-229. (1984) MR0740095DOI10.1016/0165-0114(84)90069-1
  7. E. P. Klement R. Mesiar, and E. Pap, Triangular Norms, (Trends in Logic 8.) Kluwer Academic Publishers, Dordrecht 2000. MR1790096
  8. E. P. Klement R. Mesiar, and E. Pap, Uniform approximation of associative copulas by strict and non-strict copulas, Illinois J. Math. J. 5 (2001), 4, 1393-1400. MR1895466
  9. K. Menger, 10.1073/pnas.28.12.535, Proc Nat. Acad. Sci. U.S.A. 28 (1942), 535-537. (1942) MR0007576DOI10.1073/pnas.28.12.535
  10. R. Mesiar, H. Thiele, On T -quantifiers and S -quantifiers: Discovering the World with Fuzzy Logic, (V. Novak and I. Perfilieva, eds., Studies in Fuzziness and Soft Computing vol. 57), Physica-Verlag, Heidelberg 2000, pp. 310-326. MR1858106
  11. E. Pap, Null-Additive Set Functions, Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1995. (1995) Zbl0968.28010MR1368630
  12. E. Pap O. Hadžič, and R. Mesiar, 10.1006/jmaa.1996.0325, J. Math. Anal. Appl. 202 (1996), 433-449. (1996) MR1406239DOI10.1006/jmaa.1996.0325
  13. V. Radu, Lectures on probabilistic analysis. Surveys, (Lectures Notes and Monographs Series on Probability, Statistics & Applied Mathematics 2), Universitatea de Vest din Timisoara 1994. (1994) 
  14. B. Schweizer, A. Sklar, Probabilistic Metric Spaces, Elsevier North-Holland, New York 1983. (1983) Zbl0546.60010MR0790314
  15. V. M. Sehgal, A. T. Bharucha-Reid, 10.1007/BF01706080, Math. Systems Theory 6 (1972), 97-102. (1972) Zbl0244.60004MR0310858DOI10.1007/BF01706080
  16. R. M. Tardiff, 10.1016/0022-247X(92)90055-I, J. Math. Anal. Appl. 165 (1992), 517-523. (1992) Zbl0773.54033MR1155736DOI10.1016/0022-247X(92)90055-I
  17. S. Weber, 10.1016/0022-247X(84)90061-1, J. Math. Anal. Appl. 101 (1984), 114-138. (1984) MR0746230DOI10.1016/0022-247X(84)90061-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.