Bootstrap in nonstationary autoregression

Zuzana Prášková

Kybernetika (2002)

  • Volume: 38, Issue: 4, page [389]-404
  • ISSN: 0023-5954

Abstract

top
The first-order autoregression model with heteroskedastic innovations is considered and it is shown that the classical bootstrap procedure based on estimated residuals fails for the least-squares estimator of the autoregression coefficient. A different procedure called wild bootstrap, respectively its modification is considered and its consistency in the strong sense is established under very mild moment conditions.

How to cite

top

Prášková, Zuzana. "Bootstrap in nonstationary autoregression." Kybernetika 38.4 (2002): [389]-404. <http://eudml.org/doc/33591>.

@article{Prášková2002,
abstract = {The first-order autoregression model with heteroskedastic innovations is considered and it is shown that the classical bootstrap procedure based on estimated residuals fails for the least-squares estimator of the autoregression coefficient. A different procedure called wild bootstrap, respectively its modification is considered and its consistency in the strong sense is established under very mild moment conditions.},
author = {Prášková, Zuzana},
journal = {Kybernetika},
language = {eng},
number = {4},
pages = {[389]-404},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Bootstrap in nonstationary autoregression},
url = {http://eudml.org/doc/33591},
volume = {38},
year = {2002},
}

TY - JOUR
AU - Prášková, Zuzana
TI - Bootstrap in nonstationary autoregression
JO - Kybernetika
PY - 2002
PB - Institute of Information Theory and Automation AS CR
VL - 38
IS - 4
SP - [389]
EP - 404
AB - The first-order autoregression model with heteroskedastic innovations is considered and it is shown that the classical bootstrap procedure based on estimated residuals fails for the least-squares estimator of the autoregression coefficient. A different procedure called wild bootstrap, respectively its modification is considered and its consistency in the strong sense is established under very mild moment conditions.
LA - eng
UR - http://eudml.org/doc/33591
ER -

References

top
  1. Basawa I. V., Mallik A. K., McCormick W. P., Taylor R. L., 10.1214/aos/1176347376, Ann. Statist. 17 (1989), 1479–1486 (1989) Zbl0694.62038MR1026294DOI10.1214/aos/1176347376
  2. Basu A. K., Roy S. Sen, 10.1080/02331889008802256, Statistics 21 (1990), 461–470 (1990) MR1062852DOI10.1080/02331889008802256
  3. Bose A., 10.1214/aos/1176351063, Ann. Statist. 16 (1988), 1709–1722 (1988) MR0964948DOI10.1214/aos/1176351063
  4. Brockwell P. J., Davis R. A., Time Series: Theory and Methods, Springer–Verlag, New York 1987 Zbl1169.62074MR0868859
  5. Brown B. M., 10.1214/aoms/1177693494, Ann. Math. Statist. 42 (1971), 59–66 (1971) Zbl0218.60048MR0290428DOI10.1214/aoms/1177693494
  6. Datta S., 10.1016/0378-3758(95)00147-6, J. Statist. Plann. Inference 53 (1996), 361–374 (1996) Zbl0854.62046MR1407648DOI10.1016/0378-3758(95)00147-6
  7. Davidson J., Stochastic Limit Theory, Oxford University Press, New York 1994 Zbl0904.60002MR1430804
  8. Dürr D., Loges W., Large deviation results and rates in the central limit theorem for parameter estimators for autoregressive processes, Sankhy 47 (1985), Series A, 6–24 (1985) Zbl0566.60029MR0813440
  9. Ferretti N., Romo J., 10.1093/biomet/83.4.849, Biometrika 83 (1996), 849–860 (1996) Zbl0883.62099MR1440049DOI10.1093/biomet/83.4.849
  10. Hall P., Heyde C. C., Martingale Limit Theory and Its Application, Academic Press, New York 1980 Zbl0462.60045MR0624435
  11. Heimann G., Kreiss J. P., 10.1016/0167-7152(95)00205-7, Statist. Probab. Lett. 30 (1996), 87–98 (1996) Zbl0903.62072MR1411185DOI10.1016/0167-7152(95)00205-7
  12. Kreiss J. P., Franke J., 10.1111/j.1467-9892.1992.tb00109.x, J. Time Ser. Anal. 13 (1992), 297–31 (1992) Zbl0787.62092MR1173561DOI10.1111/j.1467-9892.1992.tb00109.x
  13. Kreiss J. P., Asymptotical properties of residual bootstrap for autoregression, Preprint, TU Braunschweig 1997 
  14. Liu R. Y., Bootstrap procedures under some non-i, i.d. models. Ann. Statist. 16 (1988), 1696–1708 (1988) Zbl0655.62031MR0964947
  15. Michel R., Pfanzagl J., 10.1007/BF00538488, Z. Wahrsch. Verw. Gebiete 18 (1971), 73–84 (1971) MR0288897DOI10.1007/BF00538488
  16. Prášková Z., A contribution to bootstrapping autoregressive processes, Kybernetika 31 (1995), 359–373 (1995) MR1357350
  17. Prášková Z., Bootstrapping in autoregression with heteroscedasticities, Working paper, Charles University 1997. Unpublished (1997) 
  18. Tjøstheim D., Paulsen J., 10.1111/j.1467-9892.1985.tb00403.x, J. Time Ser. Anal. 6 (1985), 117–138 (1985) MR0797534DOI10.1111/j.1467-9892.1985.tb00403.x
  19. Wu C. F. J., 10.1214/aos/1176350142, Ann. Statist. 14 (1986), 1261–1295 (1986) Zbl0618.62072MR0868303DOI10.1214/aos/1176350142

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.