# Characterization of generic properties of linear structured systems for efficient computations

Christian Commault; Jean-Michel Dion; Jacob W. van der Woude

Kybernetika (2002)

- Volume: 38, Issue: 5, page [503]-520
- ISSN: 0023-5954

## Access Full Article

top## Abstract

top## How to cite

topCommault, Christian, Dion, Jean-Michel, and van der Woude, Jacob W.. "Characterization of generic properties of linear structured systems for efficient computations." Kybernetika 38.5 (2002): [503]-520. <http://eudml.org/doc/33600>.

@article{Commault2002,

abstract = {In this paper we investigate some of the computational aspects of generic properties of linear structured systems. In such systems only the zero/nonzero pattern of the system matrices is assumed to be known. For structured systems a number of characterizations of so-called generic properties have been obtained in the literature. The characterizations often have been presented by means of the graph associated to a linear structured system and are then expressed in terms of the maximal or minimal number of certain type of vertices contained in a combination of specific paths. In this paper we give new graph theoretic characterizations of structural invariants of structured systems. It turns out that these new characterizations allow to compute these invariants via standard and efficient algorithms from combinatorial optimization.},

author = {Commault, Christian, Dion, Jean-Michel, van der Woude, Jacob W.},

journal = {Kybernetika},

keywords = {linear structured system; graph theoretic characterizations of structural invariants; linear structured system; graph theoretic characterizations of structural invariants},

language = {eng},

number = {5},

pages = {[503]-520},

publisher = {Institute of Information Theory and Automation AS CR},

title = {Characterization of generic properties of linear structured systems for efficient computations},

url = {http://eudml.org/doc/33600},

volume = {38},

year = {2002},

}

TY - JOUR

AU - Commault, Christian

AU - Dion, Jean-Michel

AU - van der Woude, Jacob W.

TI - Characterization of generic properties of linear structured systems for efficient computations

JO - Kybernetika

PY - 2002

PB - Institute of Information Theory and Automation AS CR

VL - 38

IS - 5

SP - [503]

EP - 520

AB - In this paper we investigate some of the computational aspects of generic properties of linear structured systems. In such systems only the zero/nonzero pattern of the system matrices is assumed to be known. For structured systems a number of characterizations of so-called generic properties have been obtained in the literature. The characterizations often have been presented by means of the graph associated to a linear structured system and are then expressed in terms of the maximal or minimal number of certain type of vertices contained in a combination of specific paths. In this paper we give new graph theoretic characterizations of structural invariants of structured systems. It turns out that these new characterizations allow to compute these invariants via standard and efficient algorithms from combinatorial optimization.

LA - eng

KW - linear structured system; graph theoretic characterizations of structural invariants; linear structured system; graph theoretic characterizations of structural invariants

UR - http://eudml.org/doc/33600

ER -

## References

top- Commault C., Dion J. M., Perez A., 10.1109/9.85072, IEEE Trans. Automat. Control AC-36 (1991), 884–887 (1991) Zbl0754.93023MR1109830DOI10.1109/9.85072
- Descusse J., Dion J. M., 10.1109/TAC.1982.1103041, IEEE Trans. Automat. Control AC-27 (1982), 971–974 (1982) MR0680500DOI10.1109/TAC.1982.1103041
- Dion J. M., Commault C., 10.1016/S0167-6911(82)80029-7, Systems Control Lett. 1 (1982), 312–320 (1982) MR0670218DOI10.1016/S0167-6911(82)80029-7
- Dion J. M., Commault C., 10.1109/9.231471, IEEE Trans. Automat. Control AC-38 (1993), 1132–1135 (1993) Zbl0800.93470MR1235238DOI10.1109/9.231471
- Dion J. M., Commault, C., Montoya J., 10.1080/00207179408923133, Internat. J. Control 59 (1994), 1325–1344 (1994) Zbl0800.93477MR1277265DOI10.1080/00207179408923133
- Glover K., Silverman L. M., 10.1109/TAC.1976.1101257, IEEE Trans. Automat. Control AC-21 (1976), 534–537 (1976) Zbl0332.93012MR0424299DOI10.1109/TAC.1976.1101257
- Gondran M., Minoux M., Graphs and Algorithms, Wiley, New York 1984 Zbl1172.05001MR0745802
- Hopcroft J. E., Karp R. M., 10.1137/0202019, SIAM J. Comput. 2 (1973), 225–231 (1973) MR0337699DOI10.1137/0202019
- Hosoe S., 10.1109/TAC.1980.1102506, IEEE Trans. Automat. Control AC-25 (1980), 1192–1196 (1980) MR0601504DOI10.1109/TAC.1980.1102506
- Hovelaque V., Analyse Structurelle, Géométrique, et Graphique des Systèmes Linéaires Structurés, Thèse de Doctorat, Inst. Nat. Polytechnique de Grenoble 1997
- Hovelaque V., Commault, C., Dion J. M., 10.1016/0167-6911(95)00039-9, Systems Control Lett. 27 (1996), 73–85 (1996) Zbl0875.93117MR1388501DOI10.1016/0167-6911(95)00039-9
- Hovelaque V., Commault, C., Dion J. M., Disturbance decoupling for linear structured systems via a primal-dual algorithm, Comp. Engrg. Syst. Appl. IMACS Lille (1996), 455–459 (1996)
- Hovelaque V., Djidi N., Commault, C., Dion J. M., Decoupling problem for structured systems via a primal-dual algorithm, In: Proc. European Control Conference (ECC97), Brussels 1997
- Kuhn H. W., 10.1002/nav.3800020109, Nav. Res. Log. Quat. 2 (1955), 83–97 (1955) Zbl0143.41905MR0075510DOI10.1002/nav.3800020109
- Lin C. T., 10.1109/TAC.1974.1100557, IEEE Trans. Automat. Control AC-19 (1974), 201–208 (1974) Zbl0343.93009MR0452870DOI10.1109/TAC.1974.1100557
- Linnemann A., 10.1016/S0167-6911(81)80040-0, Systems Control Lett. 1 (1981), 79–86 (1981) Zbl0475.93049MR0670045DOI10.1016/S0167-6911(81)80040-0
- Murota K., System analysis by graphs and matroids, Algorithms and Combinatorics, Springer–Verlag, New York 1987 MR0897529
- Reinschke K. J., Multivariable Control: A Graph–heoretic Approach, Springer–Verlag, New York 1988 MR0962644
- Röbenack K., Reinschke K. J., Digraph based determination of Jordan block size structure of singular matrix pencils, Linear Algebra Appl. 275–276 (1998), 495–507 (1998) Zbl0934.15012MR1628406
- Schizas C., Evans F. J., 10.1016/0005-1098(81)90054-6, Automatica 17 (1981), 371–377 (1981) Zbl0476.93041DOI10.1016/0005-1098(81)90054-6
- Shields R. W., Pearson J. B., 10.1109/TAC.1976.1101198, IEEE Trans. Automat. Control AC-21 (1976), 203–212 (1976) MR0462690DOI10.1109/TAC.1976.1101198
- Söte W., Eine graphische Methode zur Ermittlung der Nullstellen in Mehrgrössensystemen, Reglungstechnik 28 (1980), 346–348 (1980) Zbl0459.93027
- Suda N., Wan, B., Ueno I., The orders of infinite zeros of structured systems, Trans. Soc. Instr. Control Engineers 25 (1989), 346–348 (1989)
- Woude J. W. van der, On the structure at infinity of a structured system, Linear Algebra Appl. 148 (1991), 145–169 (1991) MR1090758
- Woude J. W. van der, 10.1137/S0363012996310119, SIAM J. Control Optim. 38 (2000), 1, 1–21 MR1740610DOI10.1137/S0363012996310119
- Woude J. W. van der, The generic canonical form of a regular structured matrix pencil, Linear Algebra Appl. 353 (2002), 267–288 MR1919642
- Woude J. W. van der, Commault, C., Dion J. M., Invariants for linear structured systems, Internal report of the Laboratoire d’Automatique de Grenoble 2000
- Yamada T., 10.1002/net.3230180203, Networks 18 (1988), 105–109 (1988) Zbl0641.90039MR0939147DOI10.1002/net.3230180203

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.