Page 1 Next

Displaying 1 – 20 of 56

Showing per page

A boundary-value problem for linear PDAEs

Wiesław Marszałek, Zdzisław Trzaska (2002)

International Journal of Applied Mathematics and Computer Science

We analyze a boundary-value problem for linear partial differential algebraic equations, or PDAEs, by using the method of the separation of variables. The analysis is based on the Kronecker-Weierstrass form of the matrix pencil[A,-λ_n B]. A new theorem is proved and two illustrative examples are given.

Asymptotics of accessibility sets along an abnormal trajectory

Emmanuel Trélat (2001)

ESAIM: Control, Optimisation and Calculus of Variations

We describe precisely, under generic conditions, the contact of the accessibility set at time T with an abnormal direction, first for a single-input affine control system with constraint on the control, and then as an application for a sub-riemannian system of rank 2. As a consequence we obtain in sub-riemannian geometry a new splitting-up of the sphere near an abnormal minimizer γ into two sectors, bordered by the first Pontryagin’s cone along γ , called the L -sector and the L 2 -sector. Moreover we...

Asymptotics of accessibility sets along an abnormal trajectory

Emmanuel Trélat (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We describe precisely, under generic conditions, the contact of the accessibility set at time T with an abnormal direction, first for a single-input affine control system with constraint on the control, and then as an application for a sub-Riemannian system of rank 2. As a consequence we obtain in sub-Riemannian geometry a new splitting-up of the sphere near an abnormal minimizer γ into two sectors, bordered by the first Pontryagin's cone along γ, called the L∞-sector and the L2-sector. Moreover...

Canonical forms of singular 1D and 2D linear systems

Tadeusz Kaczorek (2003)

International Journal of Applied Mathematics and Computer Science

The paper consists of two parts. In the first part, new canonical forms are defined for singular 1D linear systems and a procedure to determine nonsingular matrices transforming matrices of singular systems to their canonical forms is derived. In the second part new canonical forms of matrices of the singular 2D Roesser model are defined and a procedure for determining realisations in canonical forms for a given 2D transfer function is presented. Necessary and sufficient conditions for the existence...

Canonical input-output representation of linear multivariable stochastic systems and joint optimal parameter and state estimation.

G. Salut, J. Aguilar-Martín, S. Lefevre (1979)

Stochastica

In this paper a complete presentation is given of a new canonical representation of multi-input, multi-output linear stochastic systems. Its equivalence with operator form directly linked with ARMA processes as well as with classical state space representation is given, and a transfer matrix interpretation is developed in an example. The importance of the new representation is mainly in the fact that in the joint state and parameters estimation problem, all unknown parameters appear linearly when...

Characterization of generic properties of linear structured systems for efficient computations

Christian Commault, Jean-Michel Dion, Jacob W. van der Woude (2002)

Kybernetika

In this paper we investigate some of the computational aspects of generic properties of linear structured systems. In such systems only the zero/nonzero pattern of the system matrices is assumed to be known. For structured systems a number of characterizations of so-called generic properties have been obtained in the literature. The characterizations often have been presented by means of the graph associated to a linear structured system and are then expressed in terms of the maximal or minimal...

Decomposition of vibration signals into deterministic and nondeterministic components and its capabilities of fault detection and identification

Tomasz Barszcz (2009)

International Journal of Applied Mathematics and Computer Science

The paper investigates the possibility of decomposing vibration signals into deterministic and nondeterministic parts, based on the Wold theorem. A short description of the theory of adaptive filters is presented. When an adaptive filter uses the delayed version of the input signal as the reference signal, it is possible to divide the signal into a deterministic (gear and shaft related) part and a nondeterministic (noise and rolling bearings) part. The idea of the self-adaptive filter (in the literature...

Externally and internally positive singular discrete-time linear systems

Tadeusz Kaczorek (2002)

International Journal of Applied Mathematics and Computer Science

Notions of externally and internally positive singular discrete-time linear systems are introduced. It is shown that a singular discrete-time linear system is externally positive if and only if its impulse response matrix is non-negative. Sufficient conditions are established under which a single-output singular discrete-time system with matrices in canonical forms is internally positive. It is shown that if a singular system is weakly positive (all matrices E, A, B, C are non-negative), then it...

Currently displaying 1 – 20 of 56

Page 1 Next