On continuous convergence and epi-convergence of random functions. Part I: Theory and relations
Kybernetika (2003)
- Volume: 39, Issue: 1, page [75]-98
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topVogel, Silvia, and Lachout, Petr. "On continuous convergence and epi-convergence of random functions. Part I: Theory and relations." Kybernetika 39.1 (2003): [75]-98. <http://eudml.org/doc/33623>.
@article{Vogel2003,
abstract = {Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization.},
author = {Vogel, Silvia, Lachout, Petr},
journal = {Kybernetika},
keywords = {continuous convergence; epi-convergence; stochastic programming; stability; continuous convergence; epi-convergence; stochastic programming; stability},
language = {eng},
number = {1},
pages = {[75]-98},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On continuous convergence and epi-convergence of random functions. Part I: Theory and relations},
url = {http://eudml.org/doc/33623},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Vogel, Silvia
AU - Lachout, Petr
TI - On continuous convergence and epi-convergence of random functions. Part I: Theory and relations
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 1
SP - [75]
EP - 98
AB - Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization.
LA - eng
KW - continuous convergence; epi-convergence; stochastic programming; stability; continuous convergence; epi-convergence; stochastic programming; stability
UR - http://eudml.org/doc/33623
ER -
References
top- Attouch H., Variational Convergence for Functions and Operators, Pitman, London 1984 Zbl0561.49012MR0773850
- Artstein Z., Wets R. J.-B., 10.1137/0804030, SIAM J. Optim. 4 (1994), 537-550 (1994) Zbl0830.90111MR1287815DOI10.1137/0804030
- Artstein Z., Wets R. J.-B., Consistency of minimizers and the SLLN for stochastic programs, J. Convex Analysis 2 (1995), 1–17 (1995) Zbl0837.90093MR1363357
- Bank B., Guddat J., Klatte D., Kummer, B., Tammer K., Non-Linear Parametric Optimization, Akademie Verlag, Berlin 1982 Zbl0502.49002
- Beer G., Topologies on Closed and Closed Convex Sets, Kluwer, Dordrecht 1993 Zbl0792.54008MR1269778
- Cohn D. L., Measure Theory, Birkhäuser, Boston 1980 Zbl0860.28001MR0578344
- Dupačová J., 10.1007/BF02055193, Ann. Oper. Res. 27 (1990), 115–142 (1990) MR1088990DOI10.1007/BF02055193
- Dupačová J., Wets R. J.-B., 10.1214/aos/1176351052, Ann. Statist. 16 (1988), 1517–1549 (1988) MR0964937DOI10.1214/aos/1176351052
- Kall P., 10.1287/moor.11.1.9, Math. Oper. Res. 11 (1986), 9–18 (1986) MR0830103DOI10.1287/moor.11.1.9
- Kall P., On approximations and stability in stochastic programming, In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 86–103 (1987) Zbl0636.90066MR0909741
- Kaniovski Y. M., King A. J., Wets R. J.-B., 10.1007/BF02031707, Ann. Oper. Res. 56 (1995), 189–208 (1995) MR1339792DOI10.1007/BF02031707
- Kaňková V., Lachout P., Convergence rate of empirical estimates in stochastic programming, Informatica 3 (1992), 497–523 (1992) Zbl0906.90133MR1243755
- King A. J., Wets R. J.-B., 10.1080/17442509108833676, Stochastics and Stochastics Reports 34 (1991), 83–92 (1991) Zbl0733.90049MR1104423DOI10.1080/17442509108833676
- Langen H.-J., 10.1287/moor.6.4.493, Math. Oper. Res. 6 (1981), 493–512 (1981) Zbl0496.90085MR0703092DOI10.1287/moor.6.4.493
- Pflug G. Ch., Ruszczyňski, A., Schultz R., 10.1287/moor.23.1.204, Math. Oper. Res. 23 (1998), 204–220 (1998) Zbl0977.90031MR1606474DOI10.1287/moor.23.1.204
- Robinson S. M., 10.1007/BF02591695, Math. Programming 37 (1987), 208–222 (1987) Zbl0623.90078MR0883021DOI10.1007/BF02591695
- Robinson S. M., Wets R. J.-B., 10.1137/0325077, SIAM J. Control Optim. 25 (1987), 1409–1416 (1987) Zbl0639.90074MR0912447DOI10.1137/0325077
- Rockafellar R. T., Wets R. J.-B., Variational Analysis, Springer–Verlag, Berlin 1998 Zbl0888.49001MR1491362
- Römisch W., Schultz R., 10.1007/BF01594935, Math. Programming 50 (1991), 197–226 (1991) Zbl0743.90083MR1103933DOI10.1007/BF01594935
- Römisch W., Schultz R., 10.1287/moor.18.3.590, Math. Oper. Res. 18 (1993), 590–609 (1993) Zbl0797.90070MR1250562DOI10.1287/moor.18.3.590
- Römisch W., Schultz R., 10.1137/0806028, SIAM J. Optim. 6 (1996), 531–447 (1996) Zbl0854.90113MR1387338DOI10.1137/0806028
- Römisch W., Wakolbinger A., Obtaining convergence rates for approximations in stochastic programming, In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 327–343 (1987) MR0909737
- Salinetti G., Wets R. J.-B., On the convergence of closed-valued measurable multifunctions, Trans. Amer. Math. Soc. 266 (1981), 275–289 (1981) Zbl0501.28005MR0613796
- Salinetti G., Wets R. J-B., 10.1287/moor.11.3.385, Math. Oper. Res. 11 (1986), 385–419 (1986) Zbl0611.60004MR0852332DOI10.1287/moor.11.3.385
- Vogel S., Stochastische Stabilitätskonzepte, Habilitation, Ilmenau Technical University, 1991
- Vogel S., 10.1007/BF01580896, Math. Programming 56 (1992), 91–119 (1992) Zbl0770.90061MR1175561DOI10.1007/BF01580896
- Vogel S., A stochastic approach to stability in stochastic programming, J. Comput. Appl. Math., Series Appl. Analysis and Stochastics 56 (1994), 65–96 (1994) Zbl0824.90107MR1338637
- Vogel S., On stability in stochastic programming – Sufficient conditions for continuous convergence and epi-convergence, Preprint of Ilmenau Technical University, 1994 MR1338637
- Wang J., 10.1007/BF00940733, J. Optim. Theory Appl. 63 (1989), 79–89 (1989) MR1022368DOI10.1007/BF00940733
- Wets R. J.-B., Stochastic programming, In: Handbooks in Operations Research and Management Science, Vol. 1, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North Holland, Amsterdam 1989, pp. 573–629 (1989) Zbl0752.90052MR1105107
- Zervos M., 10.1287/moor.24.2.495, Math. Oper. Res. 24 (1999), 2, 495–508 (1999) Zbl1074.90552MR1853885DOI10.1287/moor.24.2.495
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.