On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications

Silvia Vogel; Petr Lachout

Kybernetika (2003)

  • Volume: 39, Issue: 1, page [99]-118
  • ISSN: 0023-5954

Abstract

top
Part II of the paper aims at providing conditions which may serve as a bridge between existing stability assertions and asymptotic results in probability theory and statistics. Special emphasis is put on functions that are expectations with respect to random probability measures. Discontinuous integrands are also taken into account. The results are illustrated applying them to functions that represent probabilities.

How to cite

top

Vogel, Silvia, and Lachout, Petr. "On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications." Kybernetika 39.1 (2003): [99]-118. <http://eudml.org/doc/33624>.

@article{Vogel2003,
abstract = {Part II of the paper aims at providing conditions which may serve as a bridge between existing stability assertions and asymptotic results in probability theory and statistics. Special emphasis is put on functions that are expectations with respect to random probability measures. Discontinuous integrands are also taken into account. The results are illustrated applying them to functions that represent probabilities.},
author = {Vogel, Silvia, Lachout, Petr},
journal = {Kybernetika},
keywords = {continuous convergence; epi-convergence; stochastic programming; stability; estimates; continuous convergence; epi-convergence; stability},
language = {eng},
number = {1},
pages = {[99]-118},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications},
url = {http://eudml.org/doc/33624},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Vogel, Silvia
AU - Lachout, Petr
TI - On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 1
SP - [99]
EP - 118
AB - Part II of the paper aims at providing conditions which may serve as a bridge between existing stability assertions and asymptotic results in probability theory and statistics. Special emphasis is put on functions that are expectations with respect to random probability measures. Discontinuous integrands are also taken into account. The results are illustrated applying them to functions that represent probabilities.
LA - eng
KW - continuous convergence; epi-convergence; stochastic programming; stability; estimates; continuous convergence; epi-convergence; stability
UR - http://eudml.org/doc/33624
ER -

References

top
  1. Artstein Z., Wets R. J.-B., 10.1137/0804030, SIAM J. Optim. 4 (1994), 537–550 (1994) Zbl0830.90111MR1287815DOI10.1137/0804030
  2. Bank B., Guddat J., Klatte D., Kummer, B., Tammer K., Non-Linear Parametric Optimization, Akademie Verlag, Berlin 1982 Zbl0502.49002
  3. Billingsley P., Convergence of Probability Measures, Wiley, New York 1968 Zbl0944.60003MR0233396
  4. Billingsley P., Probability and Measure, Wiley, New York 1979 Zbl0822.60002MR0534323
  5. Devroye L., Györfi L., Nonparametric Density Estimation, The L-View. Wiley, 1985 Zbl0546.62015MR0780746
  6. Dupačová J., Wets R. J.-B., 10.1214/aos/1176351052, Ann. Statist. 16 (1988), 1517–1549 (1988) MR0964937DOI10.1214/aos/1176351052
  7. Embrechts P., Klüppelberg, C., Mikosch T., Modelling Extremal Events, Springer–Verlag, Berlin 1997 Zbl0873.62116MR1458613
  8. Györfi L., Härdle W., Sarda, P., Vieu P., Nonparametric Curve Estimation from Time Series (Lecture Notes in Statistics 60), Springer–Verlag, Berlin 1989 MR1027837
  9. Kall P., On approximations and stability in stochastic programming, In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 86–103 (1987) Zbl0636.90066MR0909741
  10. Kaniovski Y. M., King A. J., Wets R. J.-B., 10.1007/BF02031707, Ann. Oper. Res. 56 (1995), 189–208 (1995) MR1339792DOI10.1007/BF02031707
  11. Kaňková V., 10.1016/0377-0427(94)90381-6, J. Comput. Appl. Math. 56 (1994), 97–112 (1994) MR1338638DOI10.1016/0377-0427(94)90381-6
  12. Kaňková V., Lachout P., Convergence rate of empirical estimates in stochastic programming, Informatica 3 (1992), 497–523 (1992) Zbl0906.90133MR1243755
  13. King A. J., Wets R. J.-B., Epi-consistency of convex stochastic programs, Stochastics and Stochastics Reports 34(1991),83–92 (1991) Zbl0733.90049MR1104423
  14. Korf L. A., Wets R. J.-B., 10.1287/moor.26.2.421.10548, Math. Oper. Research 26 (2001), 421–445 Zbl1082.90552MR1895837DOI10.1287/moor.26.2.421.10548
  15. Lachout P., Vogel S., On continuous convergence and epi-convergence of random functions, Part I: Theory and relations. Kybernetika 39 (2003), 1, 75–98 MR1980125
  16. Langen H.-J., 10.1287/moor.6.4.493, Math. Oper. Res. 6 (1981), 493–512 (1981) Zbl0496.90085MR0703092DOI10.1287/moor.6.4.493
  17. Liebscher E., 10.1016/S0304-4149(96)00096-8, Stoch. Process. Appl. 65 (1996), 69–80 (1996) MR1422880DOI10.1016/S0304-4149(96)00096-8
  18. Lucchetti R., Wets R. J.-B., Convergence of minima of integral functionals, with applications to optimal control and stochastic optimization, Statist. Decisions 11 (1993), 69–84 (1993) Zbl0779.49030MR1220438
  19. Pflug G. Ch., Ruszczyňski, A., Schultz R., 10.1287/moor.23.1.204, Math. Oper. Res. 23 (1998), 204–220 (1998) Zbl0977.90031MR1606474DOI10.1287/moor.23.1.204
  20. Rachev S. T., The Monge–Kantorovich mass transference problem and its stochastic applications, Theory Probab. Appl. 29 (1984), 647–676 (1984) MR0773434
  21. Robinson S. M., 10.1007/BF02591695, Math. Programming 37 (1987), 208–222 (1987) Zbl0623.90078MR0883021DOI10.1007/BF02591695
  22. Robinson S. M., Wets R. J.-B., 10.1137/0325077, SIAM J. Control Optim. 25 (1987), 1409–1416 (1987) Zbl0639.90074MR0912447DOI10.1137/0325077
  23. Römisch W., Schultz R., 10.1287/moor.18.3.590, Math. Oper. Res. 18 (1993), 590–609 (1993) Zbl0797.90070MR1250562DOI10.1287/moor.18.3.590
  24. Silverman B. W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London 1986 Zbl0617.62042MR0848134
  25. Vogel S., Stochastische Stabilitätskonzepte, Habilitation, Ilmenau Technical University, 1991 
  26. Vogel S., 10.1007/BF01580896, Math. Programming 56 (1992), 91–119 (1992) Zbl0770.90061MR1175561DOI10.1007/BF01580896
  27. Vogel S., A stochastic approach to stability in stochastic programming, J. Comput. Appl. Mathematics, Series Appl. Analysis and Stochastics 56 (1994), 65–96 (1994) Zbl0824.90107MR1338637
  28. Vogel S., On stability in stochastic programming – Sufficient conditions for continuous convergence and epi-convergence, Preprint of Ilmenau Technical University, 1994 MR1338637
  29. Wang J., 10.1007/BF00940733, J. Optim. Theory Appl. 63 (1989), 79–89 (1989) MR1022368DOI10.1007/BF00940733
  30. Wets R. J.-B., Stochastic programming, In: Handbooks in Operations Research and Management Science, Vol. 1, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North Holland, Amsterdam 1989, pp. 573–629 (1989) Zbl0752.90052MR1105107
  31. Zervos M., 10.1287/moor.24.2.495, Math. Oper. Res. 24 (1999), 2, 495–508 (1999) Zbl1074.90552MR1853885DOI10.1287/moor.24.2.495

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.