On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications
Kybernetika (2003)
- Volume: 39, Issue: 1, page [99]-118
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topVogel, Silvia, and Lachout, Petr. "On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications." Kybernetika 39.1 (2003): [99]-118. <http://eudml.org/doc/33624>.
@article{Vogel2003,
abstract = {Part II of the paper aims at providing conditions which may serve as a bridge between existing stability assertions and asymptotic results in probability theory and statistics. Special emphasis is put on functions that are expectations with respect to random probability measures. Discontinuous integrands are also taken into account. The results are illustrated applying them to functions that represent probabilities.},
author = {Vogel, Silvia, Lachout, Petr},
journal = {Kybernetika},
keywords = {continuous convergence; epi-convergence; stochastic programming; stability; estimates; continuous convergence; epi-convergence; stability},
language = {eng},
number = {1},
pages = {[99]-118},
publisher = {Institute of Information Theory and Automation AS CR},
title = {On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications},
url = {http://eudml.org/doc/33624},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Vogel, Silvia
AU - Lachout, Petr
TI - On continuous convergence and epi-convergence of random functions. Part II: Sufficient conditions and applications
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 1
SP - [99]
EP - 118
AB - Part II of the paper aims at providing conditions which may serve as a bridge between existing stability assertions and asymptotic results in probability theory and statistics. Special emphasis is put on functions that are expectations with respect to random probability measures. Discontinuous integrands are also taken into account. The results are illustrated applying them to functions that represent probabilities.
LA - eng
KW - continuous convergence; epi-convergence; stochastic programming; stability; estimates; continuous convergence; epi-convergence; stability
UR - http://eudml.org/doc/33624
ER -
References
top- Artstein Z., Wets R. J.-B., 10.1137/0804030, SIAM J. Optim. 4 (1994), 537–550 (1994) Zbl0830.90111MR1287815DOI10.1137/0804030
- Bank B., Guddat J., Klatte D., Kummer, B., Tammer K., Non-Linear Parametric Optimization, Akademie Verlag, Berlin 1982 Zbl0502.49002
- Billingsley P., Convergence of Probability Measures, Wiley, New York 1968 Zbl0944.60003MR0233396
- Billingsley P., Probability and Measure, Wiley, New York 1979 Zbl0822.60002MR0534323
- Devroye L., Györfi L., Nonparametric Density Estimation, The L-View. Wiley, 1985 Zbl0546.62015MR0780746
- Dupačová J., Wets R. J.-B., 10.1214/aos/1176351052, Ann. Statist. 16 (1988), 1517–1549 (1988) MR0964937DOI10.1214/aos/1176351052
- Embrechts P., Klüppelberg, C., Mikosch T., Modelling Extremal Events, Springer–Verlag, Berlin 1997 Zbl0873.62116MR1458613
- Györfi L., Härdle W., Sarda, P., Vieu P., Nonparametric Curve Estimation from Time Series (Lecture Notes in Statistics 60), Springer–Verlag, Berlin 1989 MR1027837
- Kall P., On approximations and stability in stochastic programming, In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 86–103 (1987) Zbl0636.90066MR0909741
- Kaniovski Y. M., King A. J., Wets R. J.-B., 10.1007/BF02031707, Ann. Oper. Res. 56 (1995), 189–208 (1995) MR1339792DOI10.1007/BF02031707
- Kaňková V., 10.1016/0377-0427(94)90381-6, J. Comput. Appl. Math. 56 (1994), 97–112 (1994) MR1338638DOI10.1016/0377-0427(94)90381-6
- Kaňková V., Lachout P., Convergence rate of empirical estimates in stochastic programming, Informatica 3 (1992), 497–523 (1992) Zbl0906.90133MR1243755
- King A. J., Wets R. J.-B., Epi-consistency of convex stochastic programs, Stochastics and Stochastics Reports 34(1991),83–92 (1991) Zbl0733.90049MR1104423
- Korf L. A., Wets R. J.-B., 10.1287/moor.26.2.421.10548, Math. Oper. Research 26 (2001), 421–445 Zbl1082.90552MR1895837DOI10.1287/moor.26.2.421.10548
- Lachout P., Vogel S., On continuous convergence and epi-convergence of random functions, Part I: Theory and relations. Kybernetika 39 (2003), 1, 75–98 MR1980125
- Langen H.-J., 10.1287/moor.6.4.493, Math. Oper. Res. 6 (1981), 493–512 (1981) Zbl0496.90085MR0703092DOI10.1287/moor.6.4.493
- Liebscher E., 10.1016/S0304-4149(96)00096-8, Stoch. Process. Appl. 65 (1996), 69–80 (1996) MR1422880DOI10.1016/S0304-4149(96)00096-8
- Lucchetti R., Wets R. J.-B., Convergence of minima of integral functionals, with applications to optimal control and stochastic optimization, Statist. Decisions 11 (1993), 69–84 (1993) Zbl0779.49030MR1220438
- Pflug G. Ch., Ruszczyňski, A., Schultz R., 10.1287/moor.23.1.204, Math. Oper. Res. 23 (1998), 204–220 (1998) Zbl0977.90031MR1606474DOI10.1287/moor.23.1.204
- Rachev S. T., The Monge–Kantorovich mass transference problem and its stochastic applications, Theory Probab. Appl. 29 (1984), 647–676 (1984) MR0773434
- Robinson S. M., 10.1007/BF02591695, Math. Programming 37 (1987), 208–222 (1987) Zbl0623.90078MR0883021DOI10.1007/BF02591695
- Robinson S. M., Wets R. J.-B., 10.1137/0325077, SIAM J. Control Optim. 25 (1987), 1409–1416 (1987) Zbl0639.90074MR0912447DOI10.1137/0325077
- Römisch W., Schultz R., 10.1287/moor.18.3.590, Math. Oper. Res. 18 (1993), 590–609 (1993) Zbl0797.90070MR1250562DOI10.1287/moor.18.3.590
- Silverman B. W., Density Estimation for Statistics and Data Analysis, Chapman and Hall, London 1986 Zbl0617.62042MR0848134
- Vogel S., Stochastische Stabilitätskonzepte, Habilitation, Ilmenau Technical University, 1991
- Vogel S., 10.1007/BF01580896, Math. Programming 56 (1992), 91–119 (1992) Zbl0770.90061MR1175561DOI10.1007/BF01580896
- Vogel S., A stochastic approach to stability in stochastic programming, J. Comput. Appl. Mathematics, Series Appl. Analysis and Stochastics 56 (1994), 65–96 (1994) Zbl0824.90107MR1338637
- Vogel S., On stability in stochastic programming – Sufficient conditions for continuous convergence and epi-convergence, Preprint of Ilmenau Technical University, 1994 MR1338637
- Wang J., 10.1007/BF00940733, J. Optim. Theory Appl. 63 (1989), 79–89 (1989) MR1022368DOI10.1007/BF00940733
- Wets R. J.-B., Stochastic programming, In: Handbooks in Operations Research and Management Science, Vol. 1, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North Holland, Amsterdam 1989, pp. 573–629 (1989) Zbl0752.90052MR1105107
- Zervos M., 10.1287/moor.24.2.495, Math. Oper. Res. 24 (1999), 2, 495–508 (1999) Zbl1074.90552MR1853885DOI10.1287/moor.24.2.495
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.