Minimal positive realizations: a survey of recent results and open problems
Luca Benvenuti; Lorenzo Farina
Kybernetika (2003)
- Volume: 39, Issue: 2, page [217]-228
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topBenvenuti, Luca, and Farina, Lorenzo. "Minimal positive realizations: a survey of recent results and open problems." Kybernetika 39.2 (2003): [217]-228. <http://eudml.org/doc/33636>.
@article{Benvenuti2003,
abstract = {In this survey paper some recent results on the minimality problem for positive realizations are discussed. In particular, it is firstly shown, by means of some examples, that the minimal dimension of a positive realization of a given transfer function, may be much “larger” than its McMillan degree. Then, necessary and sufficient conditions for the minimality of a given positive realization in terms of positive factorization of the Hankel matrix are given. Finally, necessary and sufficient conditions for a third order transfer function with distinct real positive poles to have a third order positive realization are provided and some open problems related to minimality are discussed.},
author = {Benvenuti, Luca, Farina, Lorenzo},
journal = {Kybernetika},
keywords = {positive systems; positiverealizations; positive system; positive realization},
language = {eng},
number = {2},
pages = {[217]-228},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Minimal positive realizations: a survey of recent results and open problems},
url = {http://eudml.org/doc/33636},
volume = {39},
year = {2003},
}
TY - JOUR
AU - Benvenuti, Luca
AU - Farina, Lorenzo
TI - Minimal positive realizations: a survey of recent results and open problems
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 2
SP - [217]
EP - 228
AB - In this survey paper some recent results on the minimality problem for positive realizations are discussed. In particular, it is firstly shown, by means of some examples, that the minimal dimension of a positive realization of a given transfer function, may be much “larger” than its McMillan degree. Then, necessary and sufficient conditions for the minimality of a given positive realization in terms of positive factorization of the Hankel matrix are given. Finally, necessary and sufficient conditions for a third order transfer function with distinct real positive poles to have a third order positive realization are provided and some open problems related to minimality are discussed.
LA - eng
KW - positive systems; positiverealizations; positive system; positive realization
UR - http://eudml.org/doc/33636
ER -
References
top- Anderson B. D. O., New developments in the theory of positive systems, In: Systems and Control in the Twenty–first Century (Byrnes, Datta, Gilliam, and Martin, eds.), Birkhäuser, Boston 1997 Zbl0864.93032MR1427775
- Anderson B. D. O., Deistler M., Farina, L., Benvenuti L., Nonnegative realization of a linear system with nonnegative impulse response, IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications 43 (1996), 2, 134–142 (1996) MR1375779
- Benvenuti L., Farina L., On the class of linear filters attainable with charge routing networks, IEEE Trans. Circuits and Systems II: Analog and Signal Processing 43 (1996), 2, 618–622 (1996) Zbl0879.93029
- Benvenuti L., Farina L., A note on minimality of positive realizations, IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications 45 (1998), 6, 676–677 (1998) Zbl0951.93013MR1631075
- Benvenuti L., Farina L., 10.1016/S0167-6911(98)00098-X, System Control Lett. 36 (1999), 4, 261–266 (1999) Zbl0915.93014MR1752017DOI10.1016/S0167-6911(98)00098-X
- Benvenuti L., Farina L., 10.1109/50.948284, IEEE/OSA Journal of Lightwave Technology 19 (2001), 6, 1366–1375 DOI10.1109/50.948284
- Benvenuti L., Farina L., Anderson B. D. O., Bruyne F. De, Minimal positive realizations of transfer functions with positive real poles, IEEE Trans. Circuits and Systems I: Fundamental Theory and Applications 47 (2000), 9, 1370–1377 Zbl1030.93009MR1803660
- Berman A., Neumann, M., Stern R. J., Nonnegative Matrices in Dynamic Systems, Wiley, New York 1989 Zbl0723.93013MR1019319
- Commault J., Chemla J. P., 10.2307/3215060, J. Appl. Probab. 33 (1996), 368–381 (1996) Zbl0855.60071MR1385346DOI10.2307/3215060
- Farina L., 10.1016/0167-6911(96)00033-3, System Control Lett. 28 (1997), 219–226 (1997) MR1411875DOI10.1016/0167-6911(96)00033-3
- Farina L., Rinaldi S., Positive Linear Systems: Theory And Applications, Wiley Interscience, New York 2000 Zbl0988.93002MR1784150
- Foerster K. H., Nagy B., Nonnegative realizations of matrix transfer functions, Linear Algebra Appl. 311 (2000), 107–129 Zbl0989.93016MR1758208
- Gersho A., Gopinath B., 10.1109/TCS.1979.1084617, IEEE Trans. Circuits and Systems 26 (1979), 1, 81–92 (1979) Zbl0394.93054MR0521656DOI10.1109/TCS.1979.1084617
- Hadjicostis C., 10.1016/S0167-6911(99)00005-5, System Control Lett. 37 (1999), 1, 39–43 (1999) MR1747805DOI10.1016/S0167-6911(99)00005-5
- Kajiya F., Kodama, S., Abe H., Compartmental Analysis – Medical Applications and Theoretical Background, Karger, Basel 1984
- Karpelevich F. I., On the characteristic roots of matrices with nonnegative elements (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 15 (1951), 361–383 (1951) MR0043063
- Leontieff W. W., The Structure of the American Economy 1919–1939, Oxford Univ. Press, New York 1951
- Leslie P. H., 10.1093/biomet/33.3.183, Biometrika 35 (1945), 183–212 (1945) Zbl0060.31803MR0015760DOI10.1093/biomet/33.3.183
- Luenberger D. G., Introduction to Dynamic Systems, Wiley, New York 1979 Zbl0458.93001
- Minc H., Nonnegative Matrices, Wiley, New York 1987 Zbl0638.15008MR0932967
- Niewenhuis J. W., 10.1016/S0167-6911(82)80024-8, System Control Lett. 1 (1982), 4, 283–287 (1982) MR0670213DOI10.1016/S0167-6911(82)80024-8
- O’Cinneide C. A., 10.1080/15326349908807134, Stochastic Models 6 (1990), 1, 1–57 (1990) MR1047102DOI10.1080/15326349908807134
- O’Cinneide C. A., 10.1080/15326349908807560, Stochastic Models 15 (1999), 731–757 (1999) MR1708454DOI10.1080/15326349908807560
- Ohta Y., Maeda, H., Kodama S., 10.1137/0322013, SIAM J. Control Optim. 22 (1984), 2, 171–180 (1984) Zbl0539.93005MR0732422DOI10.1137/0322013
- Picci G., On the Internal Structure of Finite–State Stochastic Processes, (Lecture Notes in Economics and Mathematical Systems 162). Springer–Verlag, Berlin 1978 Zbl0395.93032MR0582802
- Rabiner L. R., A tutorial on hidden markov models and selected applications in speech recognition, Proc. IEEE 77 (1989), 257–286 (1989)
- Saaty T. L., Elements of Queueing Theory, McGraw–Hill, New York 1961 Zbl0228.60042MR0133176
- Valcher M. E., 10.1080/00207179608921708, Internat. J. Control 65 (1996), 511–536 (1996) Zbl0873.93009MR1657570DOI10.1080/00207179608921708
- Schuppen J. H. van, Stochastic realization problems motivated by econometric modelling, In: Identification and Robust Control (Byrnes and Lindquist, eds.), Elsevier 1986
- Picci G., Schuppen J. H. van, Primes in several classes of the positive matrices, Linear Algebra Appl. 277 (1998), 1–3, 149–185 (1998) MR1624540
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.