A convergence of fuzzy random variables

Dug Hun Hong

Kybernetika (2003)

  • Volume: 39, Issue: 3, page [275]-280
  • ISSN: 0023-5954

Abstract

top
In this paper, a general convergence theorem of fuzzy random variables is considered. Using this result, we can easily prove the recent result of Joo et al, which gives generalization of a strong law of large numbers for sums of stationary and ergodic processes to the case of fuzzy random variables. We also generalize the recent result of Kim, which is a strong law of large numbers for sums of levelwise independent and levelwise identically distributed fuzzy random variables.

How to cite

top

Hong, Dug Hun. "A convergence of fuzzy random variables." Kybernetika 39.3 (2003): [275]-280. <http://eudml.org/doc/33640>.

@article{Hong2003,
abstract = {In this paper, a general convergence theorem of fuzzy random variables is considered. Using this result, we can easily prove the recent result of Joo et al, which gives generalization of a strong law of large numbers for sums of stationary and ergodic processes to the case of fuzzy random variables. We also generalize the recent result of Kim, which is a strong law of large numbers for sums of levelwise independent and levelwise identically distributed fuzzy random variables.},
author = {Hong, Dug Hun},
journal = {Kybernetika},
keywords = {fuzzy number; fuzzy random variable; strong law of large numbers; fuzzy number; fuzzy random variable; strong law of large numbers},
language = {eng},
number = {3},
pages = {[275]-280},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A convergence of fuzzy random variables},
url = {http://eudml.org/doc/33640},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Hong, Dug Hun
TI - A convergence of fuzzy random variables
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 3
SP - [275]
EP - 280
AB - In this paper, a general convergence theorem of fuzzy random variables is considered. Using this result, we can easily prove the recent result of Joo et al, which gives generalization of a strong law of large numbers for sums of stationary and ergodic processes to the case of fuzzy random variables. We also generalize the recent result of Kim, which is a strong law of large numbers for sums of levelwise independent and levelwise identically distributed fuzzy random variables.
LA - eng
KW - fuzzy number; fuzzy random variable; strong law of large numbers; fuzzy number; fuzzy random variable; strong law of large numbers
UR - http://eudml.org/doc/33640
ER -

References

top
  1. Artstein Z., Vitale R. A., A strong law of large numbers for random compact sets, Ann. Probab. 13 (1985), 307–309 (1985) MR0770645
  2. Goetschel R., Voxman W., 10.1016/0165-0114(86)90026-6, Fuzzy Sets and Systems 18 (1986), 31–43 (1986) Zbl0626.26014MR0825618DOI10.1016/0165-0114(86)90026-6
  3. Hiai F., 10.1007/BFb0098809, Springer–Verlag, Berlin 1984, pp. 160–172 (1984) MR0785583DOI10.1007/BFb0098809
  4. Hong D. H., Kim H. J., 10.1016/0165-0114(94)90161-9, Fuzzy Sets and Systems 64 (1994), 387–393 (1994) Zbl0859.60003MR1289544DOI10.1016/0165-0114(94)90161-9
  5. Inoue H., 10.1016/0165-0114(91)90132-A, Fuzzy Sets and Systems 41 (1991), 285–291 (1991) Zbl0737.60003MR1111975DOI10.1016/0165-0114(91)90132-A
  6. Joo S. Y., Lee S. S., Yoo Y. H., A strong law of large numbers for stationary fuzzy random variables, J. Korean Statist. Soc. 30 (2001), 153–161 MR1892638
  7. Joo S. Y., Kim Y. K., 10.1016/S0165-0114(98)00185-7, Fuzzy Sets and Systems 111 (2000), 497–501 Zbl0961.54024MR1748559DOI10.1016/S0165-0114(98)00185-7
  8. Kim Y. K., A strong law of large numbers for fuzzy random variables, Fuzzy Sets and Systems 111 (2000), 319–323 MR1748548
  9. Klement E. P., Puri M. L., Ralescu D. A., Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A 407 (1986), 171–182 (1986) Zbl0605.60038MR0861082
  10. Kruse R., 10.1016/0020-0255(82)90049-4, Inform. Sci. 28 (1982), 233–241 (1982) Zbl0571.60039MR0717301DOI10.1016/0020-0255(82)90049-4
  11. Miyakoshi M., Shimbo M., 10.1016/0165-0114(84)90033-2, Fuzzy Sets and Systems 12 (1984), 133–142 (1984) Zbl0551.60035MR0734945DOI10.1016/0165-0114(84)90033-2
  12. Molchanov I. S., 10.1006/jmaa.1999.6403, J. Math. Anal. Appl. 235 (1999), 349–355 (1999) MR1758687DOI10.1006/jmaa.1999.6403
  13. Puri M. L., Ralescu D. A., 10.1214/aop/1176993671, Ann. Probab. 11 (1983), 222–224 (1983) Zbl0508.60021MR0682812DOI10.1214/aop/1176993671
  14. Puri M. L., Ralescu D. A., Limit theorems for random compact set in Banach space, Math. Proc. Cambridge Philos. Soc. 97 (1985), 403–409 (1985) MR0764504
  15. Puri M. L., Ralescu D. A., Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 402–422 (1986) Zbl0605.60038MR0833596
  16. Rao R. R., 10.1137/1108005, Theor. Probab. Appl. 8 (1963), 70–74 (1963) Zbl0122.13303DOI10.1137/1108005
  17. Taylor R. L., Inoue H., A strong law of large numbers for random sets in Banach spaces, Bull. Inst. Math., Academia Sinica 13 (1985), 403–409 (1985) Zbl0585.60014MR0866575
  18. Uemura T., 10.1016/0165-0114(93)90197-P, Fuzzy Sets and Systems 59 (1993), 181–188 (1993) Zbl0788.60005MR1253840DOI10.1016/0165-0114(93)90197-P

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.