Neutral functional integrodifferential control systems in Banach spaces

Krishnan Balachandran; E. Radhakrishnan Anandhi

Kybernetika (2003)

  • Volume: 39, Issue: 3, page [359]-367
  • ISSN: 0023-5954

Abstract

top
Sufficient conditions for controllability of neutral functional integrodifferential systems in Banach spaces with initial condition in the phase space are established. The results are obtained by using the Schauder fixed point theorem. An example is provided to illustrate the theory.

How to cite

top

Balachandran, Krishnan, and Anandhi, E. Radhakrishnan. "Neutral functional integrodifferential control systems in Banach spaces." Kybernetika 39.3 (2003): [359]-367. <http://eudml.org/doc/33650>.

@article{Balachandran2003,
abstract = {Sufficient conditions for controllability of neutral functional integrodifferential systems in Banach spaces with initial condition in the phase space are established. The results are obtained by using the Schauder fixed point theorem. An example is provided to illustrate the theory.},
author = {Balachandran, Krishnan, Anandhi, E. Radhakrishnan},
journal = {Kybernetika},
keywords = {controllability; phase space; neutral functional integrodifferential system; Schauder fixed point theorem; controllability; phase space; neutral functional integro-differential system; Schauder's fixed-point theorem},
language = {eng},
number = {3},
pages = {[359]-367},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Neutral functional integrodifferential control systems in Banach spaces},
url = {http://eudml.org/doc/33650},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Balachandran, Krishnan
AU - Anandhi, E. Radhakrishnan
TI - Neutral functional integrodifferential control systems in Banach spaces
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 3
SP - [359]
EP - 367
AB - Sufficient conditions for controllability of neutral functional integrodifferential systems in Banach spaces with initial condition in the phase space are established. The results are obtained by using the Schauder fixed point theorem. An example is provided to illustrate the theory.
LA - eng
KW - controllability; phase space; neutral functional integrodifferential system; Schauder fixed point theorem; controllability; phase space; neutral functional integro-differential system; Schauder's fixed-point theorem
UR - http://eudml.org/doc/33650
ER -

References

top
  1. Balachandran K., Dauer J. P., Balasubramaniam P., 10.1007/BF02191736, J. Optim. Theory Appl. 84 (1995), 83–91 (1995) MR1312963DOI10.1007/BF02191736
  2. Balachandran K., Dauer J. P., Balasubramaniam P., 10.1007/BF02192022, J. Optim. Theory Appl. 88 (1995), 61–75 (1995) MR1367033DOI10.1007/BF02192022
  3. Balachandran K., Sakthivel R., 10.1016/S0898-1221(99)00318-1, Comput. Math. Appl. 39 (2000), 117–126 Zbl0982.93019MR1729423DOI10.1016/S0898-1221(99)00318-1
  4. Han H. K., Park J. Y., Park D. G., Controllability of integrodifferential equations in Banach spaces, Bull. Korean Math. Soc. 36 (1999), 533–541 (1999) Zbl0934.35020MR1722184
  5. Hale J. K., Kato J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11–41 (1978) Zbl0383.34055MR0492721
  6. Henriquez H. R., Periodic solutions of quasilinear partial functional differential equations with unbounded delay, Funkcial. Ekvac. 37 (1994), 329–343 (1994) MR1299869
  7. Henriquez H. R., 10.1016/0362-546X(95)00160-W, Nonlinear Anal., Theory, Methods and Applications 28 (1997), 513–531 (1997) Zbl0864.35112MR1420796DOI10.1016/0362-546X(95)00160-W
  8. Hernandez E., Henriquez H. R., 10.1006/jmaa.1997.5875, J. Math. Anal. Appl. 221 (1998), 452–475 (1998) Zbl0915.35110MR1621730DOI10.1006/jmaa.1997.5875
  9. Hino Y., Murakami, S., Naito T., Functional Differential Equations with Infinite Delay, (Lecture Notes in Mathematics 1473.) Springer–Verlag, Berlin 1991 Zbl0732.34051MR1122588
  10. Park J. Y., Han H. K., Controllability of nonlinear functional integrodifferential systems in Banach spaces, Nihonkai Math. J. 8 (1997), 47–53 (1997) MR1454807
  11. Quinn M. D., Carmichael N., 10.1080/01630568508816189, Numer. Functional Anal. Optim. 7 (1984–1985), 197-219 (1984) MR0767382DOI10.1080/01630568508816189
  12. Shin J. S., An existence theorem of functional differential equations with infinite delay in a Banach space, Funkcial. Ekvac. 30 (1987), 19–29 (1987) Zbl0647.34066MR0915258

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.