# Neutral functional integrodifferential control systems in Banach spaces

Krishnan Balachandran; E. Radhakrishnan Anandhi

Kybernetika (2003)

- Volume: 39, Issue: 3, page [359]-367
- ISSN: 0023-5954

## Access Full Article

top## Abstract

top## How to cite

topBalachandran, Krishnan, and Anandhi, E. Radhakrishnan. "Neutral functional integrodifferential control systems in Banach spaces." Kybernetika 39.3 (2003): [359]-367. <http://eudml.org/doc/33650>.

@article{Balachandran2003,

abstract = {Sufficient conditions for controllability of neutral functional integrodifferential systems in Banach spaces with initial condition in the phase space are established. The results are obtained by using the Schauder fixed point theorem. An example is provided to illustrate the theory.},

author = {Balachandran, Krishnan, Anandhi, E. Radhakrishnan},

journal = {Kybernetika},

keywords = {controllability; phase space; neutral functional integrodifferential system; Schauder fixed point theorem; controllability; phase space; neutral functional integro-differential system; Schauder's fixed-point theorem},

language = {eng},

number = {3},

pages = {[359]-367},

publisher = {Institute of Information Theory and Automation AS CR},

title = {Neutral functional integrodifferential control systems in Banach spaces},

url = {http://eudml.org/doc/33650},

volume = {39},

year = {2003},

}

TY - JOUR

AU - Balachandran, Krishnan

AU - Anandhi, E. Radhakrishnan

TI - Neutral functional integrodifferential control systems in Banach spaces

JO - Kybernetika

PY - 2003

PB - Institute of Information Theory and Automation AS CR

VL - 39

IS - 3

SP - [359]

EP - 367

AB - Sufficient conditions for controllability of neutral functional integrodifferential systems in Banach spaces with initial condition in the phase space are established. The results are obtained by using the Schauder fixed point theorem. An example is provided to illustrate the theory.

LA - eng

KW - controllability; phase space; neutral functional integrodifferential system; Schauder fixed point theorem; controllability; phase space; neutral functional integro-differential system; Schauder's fixed-point theorem

UR - http://eudml.org/doc/33650

ER -

## References

top- Balachandran K., Dauer J. P., Balasubramaniam P., 10.1007/BF02191736, J. Optim. Theory Appl. 84 (1995), 83–91 (1995) MR1312963DOI10.1007/BF02191736
- Balachandran K., Dauer J. P., Balasubramaniam P., 10.1007/BF02192022, J. Optim. Theory Appl. 88 (1995), 61–75 (1995) MR1367033DOI10.1007/BF02192022
- Balachandran K., Sakthivel R., 10.1016/S0898-1221(99)00318-1, Comput. Math. Appl. 39 (2000), 117–126 Zbl0982.93019MR1729423DOI10.1016/S0898-1221(99)00318-1
- Han H. K., Park J. Y., Park D. G., Controllability of integrodifferential equations in Banach spaces, Bull. Korean Math. Soc. 36 (1999), 533–541 (1999) Zbl0934.35020MR1722184
- Hale J. K., Kato J., Phase space for retarded equations with infinite delay, Funkcial. Ekvac. 21 (1978), 11–41 (1978) Zbl0383.34055MR0492721
- Henriquez H. R., Periodic solutions of quasilinear partial functional differential equations with unbounded delay, Funkcial. Ekvac. 37 (1994), 329–343 (1994) MR1299869
- Henriquez H. R., 10.1016/0362-546X(95)00160-W, Nonlinear Anal., Theory, Methods and Applications 28 (1997), 513–531 (1997) Zbl0864.35112MR1420796DOI10.1016/0362-546X(95)00160-W
- Hernandez E., Henriquez H. R., 10.1006/jmaa.1997.5875, J. Math. Anal. Appl. 221 (1998), 452–475 (1998) Zbl0915.35110MR1621730DOI10.1006/jmaa.1997.5875
- Hino Y., Murakami, S., Naito T., Functional Differential Equations with Infinite Delay, (Lecture Notes in Mathematics 1473.) Springer–Verlag, Berlin 1991 Zbl0732.34051MR1122588
- Park J. Y., Han H. K., Controllability of nonlinear functional integrodifferential systems in Banach spaces, Nihonkai Math. J. 8 (1997), 47–53 (1997) MR1454807
- Quinn M. D., Carmichael N., 10.1080/01630568508816189, Numer. Functional Anal. Optim. 7 (1984–1985), 197-219 (1984) MR0767382DOI10.1080/01630568508816189
- Shin J. S., An existence theorem of functional differential equations with infinite delay in a Banach space, Funkcial. Ekvac. 30 (1987), 19–29 (1987) Zbl0647.34066MR0915258

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.