A general approach to decomposable bi-capacities

Susanne Saminger; Radko Mesiar

Kybernetika (2003)

  • Volume: 39, Issue: 5, page [631]-642
  • ISSN: 0023-5954

Abstract

top
We propose a concept of decomposable bi-capacities based on an analogous property of decomposable capacities, namely the valuation property. We will show that our approach extends the already existing concepts of decomposable bi-capacities. We briefly discuss additive and k -additive bi-capacities based on our definition of decomposability. Finally we provide examples of decomposable bi-capacities in our sense in order to show how they can be constructed.

How to cite

top

Saminger, Susanne, and Mesiar, Radko. "A general approach to decomposable bi-capacities." Kybernetika 39.5 (2003): [631]-642. <http://eudml.org/doc/33670>.

@article{Saminger2003,
abstract = {We propose a concept of decomposable bi-capacities based on an analogous property of decomposable capacities, namely the valuation property. We will show that our approach extends the already existing concepts of decomposable bi-capacities. We briefly discuss additive and $k$-additive bi-capacities based on our definition of decomposability. Finally we provide examples of decomposable bi-capacities in our sense in order to show how they can be constructed.},
author = {Saminger, Susanne, Mesiar, Radko},
journal = {Kybernetika},
keywords = {bi-capacity; cumulative prospect theory; decomposable capacity; uninorm; bi-capacity; cumulative prospect theory; decomposable capacity; uninorm},
language = {eng},
number = {5},
pages = {[631]-642},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A general approach to decomposable bi-capacities},
url = {http://eudml.org/doc/33670},
volume = {39},
year = {2003},
}

TY - JOUR
AU - Saminger, Susanne
AU - Mesiar, Radko
TI - A general approach to decomposable bi-capacities
JO - Kybernetika
PY - 2003
PB - Institute of Information Theory and Automation AS CR
VL - 39
IS - 5
SP - [631]
EP - 642
AB - We propose a concept of decomposable bi-capacities based on an analogous property of decomposable capacities, namely the valuation property. We will show that our approach extends the already existing concepts of decomposable bi-capacities. We briefly discuss additive and $k$-additive bi-capacities based on our definition of decomposability. Finally we provide examples of decomposable bi-capacities in our sense in order to show how they can be constructed.
LA - eng
KW - bi-capacity; cumulative prospect theory; decomposable capacity; uninorm; bi-capacity; cumulative prospect theory; decomposable capacity; uninorm
UR - http://eudml.org/doc/33670
ER -

References

top
  1. Calvo T., Kolesárová A., Komorníková, M., Mesiar R., Aggregation operators: Properties, classes and construction methods, In: Aggregation Operators (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 Zbl1039.03015MR1936384
  2. Choquet G., 10.5802/aif.53, Ann. Inst. Fourier (Grenoble) 5 (1953–1954), 131–292 (1953) MR0080760DOI10.5802/aif.53
  3. Fodor J. C., Yager R. R., Rybalov A., 10.1142/S0218488597000312, Internat. J. Uncertain. Fuzziness Knowledge-based Systems 5 (1997), 411–427 (1997) Zbl1232.03015MR1471619DOI10.1142/S0218488597000312
  4. Grabisch M., 10.1016/S0165-0114(97)00168-1, Fuzzy Sets and Systems 92 (1997), 167–189 (1997) Zbl0927.28014MR1486417DOI10.1016/S0165-0114(97)00168-1
  5. Grabisch M., Baets, B. De, Fodor J., On symmetric pseudo-additions and pseudo-multiplications: Is it possible to build a ring on [-1,1]? In: Proc, 9th Internat. Conference on Information Processing and Management of Uncertainty in Knowledge-based Systems (IPMU 2002), Volume III, Annecy (France), July 2002, pp. 1349–1363 
  6. Grabisch M., Labreuche C., Bi-capacities, In: Proc. First Internat. Conference on Soft Computing and Intelligent Systems (SCIC), Tsukuba (Japan), 2002 Zbl1208.91029
  7. Grabisch M., Labreuche C., Bi-capacities for decision making on bipolar scales, In: Proc. Seventh Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE), Varenna (Italy), 2002, pp. 185–190 
  8. Grabisch M., Labreuche C., Capacities on lattices and k -ary capacities, In: Proc. 3rd Internat. Conference in Fuzzy Logic and Technology (EUSFLAT 2003), Zittau (Germany), 2003, pp. 304–307 
  9. Greco S., Matarazzo, B., Slowinski R., Bipolar Sugeno and Choquet integrals, In: Proc. Seventh Meeting of the EURO Working Group on Fuzzy Sets (EUROFUSE), Varenna (Italy), 2002, pp. 191–196 
  10. Greco S., Matarazzo, B., Slowinski R., The axiomatic basis of multicriteria noncompensatory preferences, In: Proc. Fourth International Workshop on Preferences and Decisions, Trento (Italy), 2003, pp. 81–86 
  11. Klement E. P., Mesiar, R., Pap E., 10.1142/S0218488500000514, Internat. J. Uncertain. Fuzziness Knowledge-based Systems 8 (2000), 701–717 Zbl0991.28014MR1803475DOI10.1142/S0218488500000514
  12. Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer, Dordrecht 2000 Zbl1087.20041MR1790096
  13. Mesiar R., 10.1016/S0165-0114(98)00216-4, Fuzzy Sets and Systems 102 (1999), 423–428 (1999) MR1676909DOI10.1016/S0165-0114(98)00216-4
  14. Mesiar R., 10.1142/S0218488599000489, J. Uncertain. Fuzziness Knowledge-based Systems 7 (1999), 6, 561–568 (1999) MR1764304DOI10.1142/S0218488599000489
  15. Mesiar R., k -order additivity and maxitivity, Atti Sem. Mat. Fis. Univ. Modena LI (2003), 179–189 Zbl1220.28001MR1993888
  16. Mesiar R., Saminger S., Decomposable bi-capacities: In: Proc, Summer School on Aggregation Operators 2003 (AGOP 2003), University Alcala de Henares (Spain), 2003, pp. 155–158 
  17. Miranda P., Grabisch, M., Gil P., 10.1142/S0218488502001867, Internat. J. Uncertain. Fuzziness Knowledge-based Systems 10 (2002), 105–123 Zbl1068.28013MR1962672DOI10.1142/S0218488502001867
  18. Pap E., Null-Additive Set Functions, Kluwer, Dordrecht 1995 Zbl1003.28012MR1368630
  19. Sander W., Associative aggregation operators, In: Aggregation Operators (T. Calvo, G. Mayor, and R. Mesiar, eds.), Physica–Verlag, Heidelberg, 2002, pp. 124–158 Zbl1025.03054MR1936386
  20. Wang Z., Klir G. J., Fuzzy Measure Theory, Plenum Press, New York 1992 Zbl0812.28010MR1212086
  21. Weber S., 10.1016/0022-247X(84)90061-1, J. Math. Anal. Appl. 101 (1984), 114–138 (1984) Zbl0614.28019MR0746230DOI10.1016/0022-247X(84)90061-1
  22. Yager R. R., Rybalov A., 10.1016/0165-0114(95)00133-6, Fuzzy Sets and Systems 80 (1996), 111–120 (1996) Zbl0871.04007MR1389951DOI10.1016/0165-0114(95)00133-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.