A further investigation for Egoroff's theorem with respect to monotone set functions
Kybernetika (2003)
- Volume: 39, Issue: 6, page [753]-760
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topReferences
top- Halmos P. R., Measure Theory, Van Nostrand, New York 1968 Zbl0283.28001MR0033869
- Li J., Yasuda M., Jiang Q., Suzuki H., Wang, Z., Klir G. J., Convergence of sequence of measurable functions on fuzzy measure space, Fuzzy Sets and Systems 87 (1997), 317–323 (1997) MR1449484
- Li J., 10.1016/S0165-0114(02)00219-1, Fuzzy Sets and Systems 135 (2003), 367–375 MR1979605DOI10.1016/S0165-0114(02)00219-1
- Li J., 10.1016/S0096-3003(01)00317-4, Applied Mathematics and Computation 135 (2003), 211–218 MR1937247DOI10.1016/S0096-3003(01)00317-4
- Li J., Yasuda M., Egoroff’s theorems on monotone non-additive measure space, Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems (to appear) MR2052989
- Pap E., Null-additive Set Functions, Kluwer, Dordrecht 1995 Zbl1003.28012MR1368630
- Ralescu D., Adams G., 10.1016/0022-247X(80)90101-8, J. Math. Anal. Appl. 75 (1980), 562–570 (1980) Zbl0438.28007MR0581840DOI10.1016/0022-247X(80)90101-8
- Taylor S. J., An alternative form of Egoroff’s theorem, Fundamenta Mathematicae 48 (1960), 169–174 (1960) Zbl0098.26502MR0117311
- Wagner E., Wilczyński W., Convergence almost everywhere of sequences of measurable functions, Colloquium Mathematicum 45 (1981), 119–124 (1981) Zbl0497.28006MR0652608
- Wang Z., 10.1016/0022-247X(84)90243-9, J. Math. Anal. Appl. 99 (1984), 195–218 (1984) Zbl0581.28003MR0732712DOI10.1016/0022-247X(84)90243-9
- Wang Z., Klir G. J., Fuzzy Measure Theory, Plenum Press, New York 1992 Zbl0812.28010MR1212086