Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum
Susana Díaz; Susana Montes; Bernard De Baets
Kybernetika (2004)
- Volume: 40, Issue: 1, page [71]-88
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topDíaz, Susana, Montes, Susana, and De Baets, Bernard. "Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum." Kybernetika 40.1 (2004): [71]-88. <http://eudml.org/doc/33686>.
@article{Díaz2004,
abstract = {Transitivity is a fundamental notion in preference modelling. In this work we study this property in the framework of additive fuzzy preference structures. In particular, we depart from a large preference relation that is transitive w.r.t. the nilpotent minimum t-norm and decompose it into an indifference and strict preference relation by means of generators based on t-norms, i. e. using a Frank t-norm as indifference generator. We identify the strongest type of transitivity these indifference and strict preference components show, both in general and for the important class of weakly complete large preference relations.},
author = {Díaz, Susana, Montes, Susana, De Baets, Bernard},
journal = {Kybernetika},
keywords = {fuzzy relation; indifference; nilpotent minimum; strict preference; transitivity; fuzzy relation; indifference; nilpotent minimum; strict preference; transitivity},
language = {eng},
number = {1},
pages = {[71]-88},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum},
url = {http://eudml.org/doc/33686},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Díaz, Susana
AU - Montes, Susana
AU - De Baets, Bernard
TI - Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 1
SP - [71]
EP - 88
AB - Transitivity is a fundamental notion in preference modelling. In this work we study this property in the framework of additive fuzzy preference structures. In particular, we depart from a large preference relation that is transitive w.r.t. the nilpotent minimum t-norm and decompose it into an indifference and strict preference relation by means of generators based on t-norms, i. e. using a Frank t-norm as indifference generator. We identify the strongest type of transitivity these indifference and strict preference components show, both in general and for the important class of weakly complete large preference relations.
LA - eng
KW - fuzzy relation; indifference; nilpotent minimum; strict preference; transitivity; fuzzy relation; indifference; nilpotent minimum; strict preference; transitivity
UR - http://eudml.org/doc/33686
ER -
References
top- Butnariu D., Klement E. P., Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer, Dordrecht 1993 Zbl0804.90145MR2867321
- Dasgupta M., Deb R., 10.1007/BF00179234, Social Choice and Welfare 13 (1996), 305–318 (1996) Zbl1075.91526MR1395364DOI10.1007/BF00179234
- Dasgupta M., Deb R., Factoring fuzzy transitivity, Fuzzy Sets and Systems 118 (2001), 489–502 Zbl1017.91012MR1809396
- Baets B. De, Fodor J., Twenty years of fuzzy preference structures (1978–1997), JORBEL 37 (1997), 61–82 (1997) Zbl0926.91012MR1619319
- Baets B. De, Fodor J., Generator triplets of additive fuzzy preference structures, In: Proc. Sixth Internat. Workshop on Relational Methods in Computer Science, Tilburg, The Netherlands, 2001, pp. 306–315
- Baets B. De, Walle, B. Van De, Kerre E., 10.1016/0165-0114(94)00379-9, Fuzzy Sets and Systems 76 (1995), 333–348 (1995) Zbl0858.90001MR1365400DOI10.1016/0165-0114(94)00379-9
- Díaz S., Baets, B. De, Montes S., On the transitivity of fuzzy indifference relations, Fuzzy Sets and Systems – IFSA 2003 (T. Bilgiç, B. DeBaets, and O. Kayak, eds., Lecture Notes in Computer Science 2715.) Springer–Verlag, Berlin 2003, pp. 87–94 Zbl1132.68768
- Díaz S., Baets, B. De, Montes S., -Ferrers relations versus -biorders, Fuzzy Sets and Systems – IFSA 2003 (T. Bilgiç, B. DeBaets, and O. Kayak, eds., Lecture Notes in Computer Science 2715.) Springer–Verlag, Berlin 2003, pp. 269–276 Zbl1132.68769
- Fodor J., 10.1016/0165-0114(94)00210-X, Fuzzy Sets and Systems 69 (1995), 141–156 (1995) Zbl0845.03007MR1317882DOI10.1016/0165-0114(94)00210-X
- Fodor J., Roubens M., 10.1016/0377-2217(94)90358-1, European J. Oper. Res. 79 (1994), 277–286 (1994) Zbl0812.90005DOI10.1016/0377-2217(94)90358-1
- Fodor J., Roubens M., Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer, Dordrecht 1994 Zbl0827.90002
- Jenei S., 10.1080/11663081.2000.10510989, (I) Rotation construction. J. Appl. Non-Classical Logics 10 (2000), 83–92 Zbl1050.03505MR1826844DOI10.1080/11663081.2000.10510989
- Jenei S., 10.3166/jancl.11.351-366, (II) Rotation-annihilation construction. J. Appl. Non-Classical Logics 11 (2001), 351–366 Zbl1050.03505MR1916884DOI10.3166/jancl.11.351-366
- Jenei S., Structure of left-continuous triangular norms with strong induced negations, (III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208 Zbl1050.03505MR1908426
- Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer, Dordrecht 2000 Zbl1087.20041MR1790096
- Perny P., Modélisation, agrégation et expoitation des préférences floues dans une problématique de rangement, Ph.D. Thesis, Université Paris Dauphine, Paris 1992
- Perny P., Roy B., 10.1016/0165-0114(92)90108-G, Fuzzy Sets and Systems 49 (1992), 33–53 (1992) Zbl0765.90003MR1177945DOI10.1016/0165-0114(92)90108-G
- Roubens M., Vincke, Ph., Preference Modelling, Springer–Verlag, Berlin 1985 Zbl0612.92020MR0809182
- Walle B. Van De, Het bestaan en de karakterisatie van vaagpreferentiestrukturen, Ph.D. Thesis, Ghent University, 1996
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.