A discussion on aggregation operators
Kybernetika (2004)
- Volume: 40, Issue: 1, page [107]-120
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topGómez, Daniel, and Montero, Javier. "A discussion on aggregation operators." Kybernetika 40.1 (2004): [107]-120. <http://eudml.org/doc/33688>.
@article{Gómez2004,
abstract = {It has been lately made very clear that aggregation processes can not be based upon a unique binary operator. Global aggregation operators have been therefore introduced as families of aggregation operators $\lbrace T_n\rbrace _n$, being each one of these $T_n$ the $n$-ary operator actually amalgamating information whenever the number of items to be aggregated is $n$. Of course, some mathematical restrictions can be introduced, in order to assure an appropriate meaning, consistency and key mathematical capabilities. In this paper we shall discuss these standard conditions, pointing out their respective relevance.},
author = {Gómez, Daniel, Montero, Javier},
journal = {Kybernetika},
keywords = {aggregation rules; logical connectives; fuzzy sets; aggregation rule; logical connective; fuzzy set},
language = {eng},
number = {1},
pages = {[107]-120},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A discussion on aggregation operators},
url = {http://eudml.org/doc/33688},
volume = {40},
year = {2004},
}
TY - JOUR
AU - Gómez, Daniel
AU - Montero, Javier
TI - A discussion on aggregation operators
JO - Kybernetika
PY - 2004
PB - Institute of Information Theory and Automation AS CR
VL - 40
IS - 1
SP - [107]
EP - 120
AB - It has been lately made very clear that aggregation processes can not be based upon a unique binary operator. Global aggregation operators have been therefore introduced as families of aggregation operators $\lbrace T_n\rbrace _n$, being each one of these $T_n$ the $n$-ary operator actually amalgamating information whenever the number of items to be aggregated is $n$. Of course, some mathematical restrictions can be introduced, in order to assure an appropriate meaning, consistency and key mathematical capabilities. In this paper we shall discuss these standard conditions, pointing out their respective relevance.
LA - eng
KW - aggregation rules; logical connectives; fuzzy sets; aggregation rule; logical connective; fuzzy set
UR - http://eudml.org/doc/33688
ER -
References
top- Aczél J., Lectures on Functional Equations and Their Applications, Academic Press, New York 1966 MR0208210
- Amo A., Montero J., Biging, G., Cutello V., Fuzzy classification systems, European J. Oper. Res. (to appear) Zbl1056.90077MR2045676
- Amo A. Del, Montero, J., Molina E., Additive recursive rules, In: Preferences and Decisions Under Incomplete Knowledge (J. Fodor et al, eds.), Physica–Verlag, Heidelberg 2000 MR1787356
- Amo A. Del, Montero, J., Molina E., 10.1016/S0377-2217(00)00032-1, European J. Oper. Res. 30 (2001), 29–53 MR1813733DOI10.1016/S0377-2217(00)00032-1
- Amo A. del, Montero, J., Biging G., 10.1080/03081070008960964, Internat. J. Gen. Systems 29 (2000), 605–621 DOI10.1080/03081070008960964
- Amo A., Montero J., Fernández A., López M., Tordesillas, J., Biging G., 10.1109/TSMCC.2002.1009135, IEEE Trans. Systems, Man and Cybernetics 32 (2002), 42–48 DOI10.1109/TSMCC.2002.1009135
- Barlow R. E., Proschan F., Statistical Theory of Reliability and Life Testing, To Begin With, Silver Spring 1981 Zbl0379.62080
- Cai K. Y., Introduction to Fuzzy Reliability, Kluwer, Boston 1996 Zbl0877.68006
- Calvo T., Mayor, G., (eds.) R. Mesiar, Aggregation Operators, Physica–Verlag, Heidelberg 2002 Zbl0983.00020MR1936383
- Calvo T., Kolesárová A., Komorníková, M., Mesiar R., Aggregation operators: properties, classes and construction methods, In: Aggregation Operators (T. Calvo et al, eds.), Physica–Verlag, Heidelberg 2002, pp. 3–104 Zbl1039.03015
- Cutello V., Montero J., Recursive families of OWA operators, In: Proc. FUZZ-IEEE Conference (P. P. Bonisone, ed.), IEEE Press, Piscataway 1994, pp. 1137–1141 (1994)
- Cutello V., Montero J., 10.1142/S0218488595000037, Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 3 (1995), 17–26 (1995) Zbl1232.90323MR1321934DOI10.1142/S0218488595000037
- Cutello V., Montero J., Recursive connective rules, Intelligent Systems 14 (1999), 3–20 (1999) Zbl0955.68103
- Baets B. De, 10.1016/S0377-2217(98)00325-7, European J. Oper. Res. 118 (1999), 631–642 (1999) Zbl0933.03071DOI10.1016/S0377-2217(98)00325-7
- Dombi J., 10.1016/0377-2217(82)90227-2, European J. Oper. Res. 10 (1982), 282–293 (1982) Zbl0488.90003MR0665480DOI10.1016/0377-2217(82)90227-2
- Fodor J. C., Roubens M., Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer, Dordrecht 1994 Zbl0827.90002
- Fung L. W., Fu K. S., An axiomatic approach to rational decision making in a fuzzy environment, In: Fuzzy Sets and Their Applications to Cognitive and Decision Processes (L. Zadeh et al, eds.), Academic Press, New York 1975, pp. 227–256 (1975) Zbl0366.90003MR0398652
- Golumbic M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York 1980 Zbl1050.05002MR0562306
- Gómez D., Montero J., Yáñez J., González-Pachón, J., Cutello V., Crisp dimension theory and valued preference relations, Internat. J. Gen. Systems (to appear) Zbl1048.91035
- Klement E. P., Mesiar, R., Pap E., Triangular Norms, Kluwer, Dordrecht 2000 Zbl1087.20041MR1790096
- Klement E. P., Mesiar, R., Pap E., 10.1142/S0218488596000081, Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 4 (1996), 129–144 (1996) Zbl1232.03041MR1390899DOI10.1142/S0218488596000081
- Klir G. J., Folger T. A., Fuzzy Sets, Uncertainty and Information, Prentice Hall, London 1988 Zbl0675.94025MR0930102
- Kolesárová A., Komorníková M., 10.1016/S0165-0114(98)00263-2, Fuzzy Sets and Systems 104 (1999), 109–120 (1999) Zbl0931.68123DOI10.1016/S0165-0114(98)00263-2
- Mak K. T., 10.1287/moor.12.4.597, Mathem. Oper. Res. 12 (1987), 597–625 (1987) Zbl0648.39006MR0913861DOI10.1287/moor.12.4.597
- Marichal J. L., Mathonet, P., Tousset E., Characterization of some aggregation functions stable for positive linear transformations, Fuzzy Sets and Systems 102 (1999), 293–314 (1999) Zbl0952.91020MR1674975
- Mas M., Mayor G., Suñer, J., Torrens J., Generation of multi-dimensional aggregation functions, Mathware and Soft Computing 5 (1998), 233–242 (1998) Zbl0955.03060MR1704066
- Mas M., Mayor, G., Torrens J., 10.1142/S0218488599000039, Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 7 (1999), 31–50 (1999) Zbl1087.03515MR1691482DOI10.1142/S0218488599000039
- Mayor G., Calvo T., On extended aggregation functions, In: Proc. IFSA Conference, Volume 1, Academia, Prague 1997, pp. 281–285 (1997)
- Menger K., 10.1073/pnas.28.12.535, Proc. Nat. Acad. Sci. U.S.A. 8 (1942), 535–537 (1942) MR0007576DOI10.1073/pnas.28.12.535
- Mesiar R., Compensatory operators based on triangular norms and conorms, In: Proc. EUFIT Conference (H.-J. Zimmermann, ed.), Elite Foundation, Aachen 1995, pp. 131–135 (1995)
- Mesiar R., Komorníková M., Aggregation operators, In: Proc. PRIM Conference, Institute of Mathematics, Novi Sad 1997, pp. 193–211 (1997) Zbl0960.03045MR1492233
- Mesiar R., Komorníková M., Triangular norm-based aggregation of evidence under fuzziness, In: Aggregation and Fussion of Imperfect Information (B. Bouchon–Meunier, ed.), Physica–Verlag, Heidelberg 1998, pp. 11–35 (1998) MR1644803
- Montero J., A note on Fung–Fu’s theorem, Fuzzy Sets and Systems 17 (1985), 259–269 (1985) Zbl0606.90008MR0819363
- Montero J., 10.1016/0165-0114(88)90095-4, Fuzzy Sets and Systems 25 (1988), 15–20 (1988) MR0918005DOI10.1016/0165-0114(88)90095-4
- Montero J., Amo A., Molina, E., Cutello V., On the relevance of OWA rules, In: Proc. IPMU Conference, Volume 2, Universidad Politécnica de Madrid, Madrid 2000, pp. 992–996
- Montero J., Tejada, J., Yáñez J., 10.1016/0377-2217(90)90188-H, European J. Oper. Res. 45 (1990), 231–240 (1990) MR1061268DOI10.1016/0377-2217(90)90188-H
- Pattanaik P., Voting and Collective Choice, Cambridge Univ. Press, Cambridge 1970
- Schweizer B., Sklar A., Probabilistic Metric Spaces, North Holland, Amsterdam 1983 Zbl0546.60010MR0790314
- Shirland L. E., Jesse R. R., Thompson R. L., Iacovou C. L., 10.1016/S0305-0483(03)00081-1, Omega 31 (2003), 423–437 DOI10.1016/S0305-0483(03)00081-1
- Trillas E., Sobre funciones de negación en la teoría de los subconjuntos difusos, Stochastica III-1:47–59, 1983; English version in : Advances of Fuzzy Logic Universidad de Santiago de Compostela (S. Barro et al, eds.), Santiago de Compostela 1998, pp. 31–43 (1983)
- Walther G., Granulometric smoothing, Ann. Statist. 25 (1999), 2273–2299 (1999) MR1604445
- Yager R. R., 10.1109/21.87068, IEEE Trans. Systems, Man and Cybernetics 18 (1988), 183–190 (1988) MR0931863DOI10.1109/21.87068
- Yager R. R., Rybalov A., 10.1016/0165-0114(95)00133-6, Fuzzy Sets and Systems 80 (1996), 111–120 (1996) Zbl0871.04007MR1389951DOI10.1016/0165-0114(95)00133-6
- Zadeh L. A., 10.1016/S0019-9958(65)90241-X, Inform. and Control 8 (1965), 338–353 (1965) Zbl0139.24606MR0219427DOI10.1016/S0019-9958(65)90241-X
- Zimmermann H. J., Zysno P., Latent connectives in human decision making, Fuzzy Sets and Systems 4 (1980), 37–51 (1980) Zbl0435.90009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.